A.1 Norms

Definition A..1 (Norm)   A normed space $ (X,\Vert.\Vert)$ is a vector space $ X$ (over a field $ \mathbb{K}$) with a norm $ \Vert.\Vert: X\to\mathbb{R}^+_0$ such that for all $ x,y\in X$ and $ \alpha\in\mathbb{K}$
  1. $ x=0 \iff \Vert x\Vert=0$,
  2. $ \Vert\alpha x\Vert = \vert\alpha\vert \; \Vert x\Vert$,
  3. $ \Vert x+y \Vert \le \Vert x\Vert + \Vert y\Vert$.

Definition A..2 (Equivalent Norms)   Two norms $ \Vert.\Vert _1$ and $ \Vert.\Vert _2$ on a vector space $ X$ are called equivalent if there are positive numbers $ a$ and $ b$ such that

$\displaystyle \forall x \in X: \quad
a \Vert x\Vert _1 \le \Vert x\Vert _2 \le b \Vert x\Vert _1.
$

Remark. Equivalent norms on $ X$ define the same topology on $ X$.

Theorem A..3 (Equivalence of Norms)   All norms on a finite dimensional normed space are equivalent.

Clemens Heitzinger 2003-05-08