A.2 Means

Definition A..4 (Weighted Mean)   $ p\in\mathbb{R}^n$ is called a vector of weights if $ p_k>0$ for all $ k\in\{1,\ldots,n\}$. For $ \alpha\in\mathbb{R}$, $ x\in\mathbb{R}^n$, and $ p$ a vector of weights we define the weighted $ \alpha$-mean of $ x$ as follows:
  1. $ \alpha>0$: $ M_\alpha(x,p) := \left( \sum p_k x_k^r / \sum p_k \right)^{(1/r)}$,
  2. $ \alpha=0$: $ M_0(x,p) := \left( \prod x_k^{p_k} \right)^{1/\sum p_k}$,
  3. $ \alpha<0$ and one $ x_k=0$: $ M_\alpha(x,p):=0$.
In the case where all $ p_k$ are equal we also write shorter $ M_\alpha(x):=M_\alpha(x,p)$.

Theorem A..5 (Inequality of the Means)   If $ \alpha<\beta$ then

$\displaystyle \qquad M_\alpha(x) \le M_\beta(x) \qquad\forall x\in\mathbb{R}^n,
$

unless the $ x_k$ are all equal, or $ s\le0$ and one $ x_k$ is zero.

Remark. Many more properties of means can be found in [43].

Remark. For $ x\in\mathbb{R}^n$, obviously $ M_2(x) = \sqrt{\sum x_k^2/n} =
{1\over\sqrt{n}} \Vert x\Vert _2$.

Clemens Heitzinger 2003-05-08