next up previous contents
Next: Own Publications Up: Dissertation Gerhard Karlowatz Previous: 7. Summary and Conclusions

Bibliography

Anghel03
D.V. Anghel.
Bravias Lattice Table.
2003.

http://folk.uio.no/dragos/Solid/.

Arnold00
Douglas N. Arnold, Arup Mukherjee, and Luc Pouly.
Locally Adapted Tetrahedral Meshes Using Bisection.
SIAM J. Sci. Comput., vol. 22, no. 2, pages 431-448, 2000.

Ashcroft76
N. W. Ashcroft, and N. D. Mermin.
``Solid state physics''.
W. B. Saunders, Philadelphia, 1976.

Beeman07
J. W. Beeman, S. Goyal, L. A. Reichertz, and E. E. Haller.
Ion-implanted Ge:B far-infrared blocked-impurity-band detectors.
Infrared Physics & Technology, vol. 51, no. 1, pages 60-65, 2007.

Bernstein06
K. Bernstein, D. J. Frank, A. E. Gattiker, W. Haensch, B. L. Ji, E. J. Nowak S. R. Nassif and, D. J. Pearson, and N. J. Rohrer.
High Performance CMOS Variability in the 65-nm Regime and Beyond.
IBM J.Res.Dev., vol. 50, no. 4/5, pages 433-450, 2006.

Bhattacharyya93
K. Bhattacharyya, S. M. Goodnick, and J. F. Wager.
Monte Carlo simulation of electron transport in alternating-current thin-film electroluminescent devices.
J.Appl.Phys., vol. 73, no. 7, pages 3390-3395, 1993.

Bir74
G. L. Bir, and G. E. Pikus.
``Symmetry and strain induced effects in semiconductors''.
Wiley, New York, 1974.

Brooks51
H. Brooks.
Scattering by Ionized Impurities in Semiconductors.
Phys.Rev., vol. 83, page 879, 1951.

Bufler01
F. M. Bufler, A. Schenk, and W. Fichtner.
Simplified model for inelastic acoustic phonon scattering of holes in Si and Ge.
J.Appl.Phys., vol. 90, no. 5, pages 2626-2628, 2001.

Canali75
C. Canali, C. Jacoboni, F. Nava, G. Ottaviani, and A. Alberigi-Quaranta.
Electron Drift Velocity in Silicon.
Phys. Rev. B, vol. 12, no. 6, pages 2265-2284, 1975.

Cartier93
E. Cartier, M. V. Fischetti, E. A. Eklund, and F. R. McFeely.
Impact Ionization in Silicon.
Appl. Phys. Lett., vol. 62, no. 25, pages 3339-2241, 1993.

Conwell67
E.M. Conwell.
``High field transport in semiconductors'', volume 9 of Solid State Physics.
Academic Press, New York, London, 1967.

Dhar06
S. Dhar, H. Kosina, G. Karlowatz, E. Ungersboeck, T. Grasser, and S. Selberherr.
High-field electron mobility model for strained-silicon devices.
IEEE Trans.Electron Devices, vol. 53, no. 12, pages 3054-3062, 2006.

Erginsoy50
Cavid Erginsoy.
Neutral Impurity Scattering in Semiconductors.
Phys.Rev., vol. 79, no. 6, pages 1013-1014, 1950.

Ferry91
D.K. Ferry.
``Semiconductors''.
Macmillan, New York, 1991.

Fischer99
Björn Fischer.
A Full-Band Monte Carlo Charge Transport Model for Nanoscale Silicon Devices Including Strain.
PhD thesis, University Hannover, Germany, 1999.

Fischetti96a
M. V. Fischetti, and S. E. Laux.
Band structure, deformation potentials, and carrier mobility in strained Si, Ge, and SiGe alloys.
J.Appl.Phys., vol. 80, no. 4, pages 2234-2252, 1996.

Fischetti96b
M.V. Fischetti, and S.E. Laux.
Monte Carlo simulation of electron transport in Si: The first 20 years.
In G. Baccarani, and M. Rudan, editors, 26th European Solid State Device Research Conference, pages 813-820, Bologna, Italy, 1996. Editions Frontiers.

Fleischmann99
Peter Fleischmann.
Mesh Generation for Technology CAD in Three Dimensions.
Dissertation, Institut für Mikroelektronik, Technische Universität Wien, 1999.

http://www.iue.tuwien.ac.at/phd/fleischmann.

Gehrz07
R. D. Gehrz, T. L. Roellig, M. W. Werner, G. G. Fazio, J. R. Houck, F. J. Low, G. H. Rieke, B. T. Soifer, D. A. Levine, and E. A. Romana.
The NASA Spitzer Space Telescope.
Review of Scientific Instruments, vol. 78, no. 1, page 011302, 2007.

Ghani03
T. Ghani, M. Armstrong, C. Auth, M. Bost, P. Charvat, T. Hoffmann, K. Johnson, C. Kenyon, J. Klaus, B. McIntyre, K. Mistry, J. Sandford, M. Silberstein, S. Sivakumar, P. Smith, K. Zawadzki, S. Thompson, , and M. Bohr.
A 90nm high volume manufacturing logic technology featuring novel 45nm gate length strained silicon CMOS transistors.
In Proc.Intl.Electron Devices Meeting, pages 11.6.1-3, 2003.

Ghosh06
B. Ghosh, X. F. Fan, and L. F. Register.
Monte Carlo study of strained Germanium nanoscale bulk pMOSFETs.
IEEE Trans.Electron Devices, vol. 53, no. 3, pages 533-537, 2006.

Haegel03a
N. M. Haegel.
BIB detector development for the far infrared: from Ge to GaAs.
In M. Razeghi, and G. J. Brown, editors, Quantum Sensing: Evolution and Revolution from Past to Future. Proceedings of the SPIE, volume 4999, pages 182-194, 2003.

Haegel03b
N. M. Haegel, S. A. Samperi, and A. M. White.
Electric field and responsivity modeling for far-infrared blocked impurity band detectors.
J.Appl.Phys., vol. 93, no. 2, pages 1305-1310, 2003.

Haensch06
W. Haensch, E. J. Nowak, and Dennard R. H.
Silicon CMOS Devices Beyond Scaling.
IBM J.Res.Dev., vol. 50, no. 4/5, pages 339-361, 2006.

Harrison56
W. A. Harrison.
Scattering of electrons by lattice vibrations in nonpolar crystals.
Phys.Rev., vol. 104, no. 5, pages 1281-1290, 1956.

Hinckley90
J. M. Hinckley, and J. Singh.
Influence of substrate composition and crystallographic orientation on the band structure of pseudomorphic Si-Ge alloy films.
Phys.Rev.B, vol. 42, pages 3546-3566, 1990.

Hooke78
R. Hooke.
``De potentia restitutiva''.
1678.

Huffman92
J. E. Huffman, A. G. Crouse, B. L. Halleck, T. V. Downes, and T. L. Herter.
Si:Sb blocked impurity band detectors for infrared astronomy.
J.Appl.Phys., vol. 72, pages 273-275, July 1992.

Intel07
Intel.
45nm technology, 2007.

http://www.intel.com/technology/45nm.

Irie04
H. Irie, K. Kita, K. Kyuno, and A. Toriumi.
In-Plane Mobility Anisotropy and Universality Under Uni-Axial Strains in n- and p-MOS Inversion Layers on (100), (110), and (111) Si.
IEDM Techn. Dig., pages 225-228, 2004.

Itoh97
K. M. Itoh, T. Kinoshita, J. Muto, N. M. Haegel, W. Walukiewicz, O. D. Dubon, J. W. Beeman, and E. E. Haller.
Carrier scattering by neutral divalent impurities in semiconductors: Theory and experiment.
Phys.Rev.B, vol. 56, no. 4, pages 1906-1910, 1997.

IuE04
IuE.
MINIMOS-NT 2.1 User's Guide.
Institut für Mikroelektronik, Technische Universität Wien, Austria, 2004.
http://www.iue.tuwien.ac.at/software/minimos-nt.

IuE06
IuE.
Vienna Monte Carlo 2.0 User's Guide.
Institut für Mikroelektronik, Technische Universität Wien, Austria, 2006.
http://www.iue.tuwien.ac.at/software.

Jacoboni83
C. Jacoboni, and L. Reggiani.
The Monte Carlo method for the solution of charge transport in semiconductors with applications to covalent materials.
Reviews of Modern Physics, vol. 55, no. 3, pages 645-705, 1983.

Jungemann03
C. Jungemann, and B. Meinerzhagen.
``Hierarchical Device Simulation''.
Springer, Wien New York, first edition, 2003.

Kalos86
M. H. Kalos, and P. A. Whitlock.
``Monte Carlo methods, volume I: Basics''.
Wiley-Interscience Publications, John Wiley and Sons, New York, 1986.

Karlowatz07
G. Karlowatz, W. Wessner, and H. Kosina.
Effect of Band Structure Discretization on the Performance of Full-Band Monte Carlo Simulation.
In 5th IMACS Symposium on Mathematical Modelling - 5th MATHMOD Vienna - Mathematics and Computers in Simulation - Transactions of IMACS, volume 5, pages 4.1-4.6. Elsevier, 2007.

Kittel96
C. Kittel.
``Introduction to solid state physics''.
John Wiley & Sons, 7 edition, 1996.

Kosina97
H. Kosina.
Efficient Evaluation of Ionized-Impurity Scattering in Monte Carlo Transport Calculations.
Phys.stat.sol.(a), vol. 163, pages 475-489, 1997.

Kosina98
H. Kosina, and G. Kaiblinger-Grujin.
Ionized-Impurity Scattering of Majority Electrons in Silicon.
Solid-State Electron., vol. 42, no. 3, pages 331-338, 1998.

Kosina00
H. Kosina, M. Nedjalkov, and S. Selberherr.
Theory of the Monte Carlo Method for Semiconductor Device Simulation.
IEEE Trans.Electron Devices, pages 1898-1998, 2000.

Kossaczký94
Igor Kossaczký.
A Recursive Approach to Local Mesh Refinement in Two or Three Dimensions.
ELSEVIER Journal of Computational and Applied Mathematics, no. 55, pages 275 - 288, 1994.

Kwong90
K. C. Kwong, N. Y. Du, J. Callaway, and R. A. LaViolette.
Inelastic scattering of electrons by neutral impurities in semiconductors.
Phys.Rev.B, vol. 41, no. 18, pages 12666-12671, 1990.

Landau81
L.D. Landau, and E.M. Lifshitz.
``Course in theoretical physics, vol. 3: Quantum mechanics non-relativistic theory''.
Butterworth-Heinemann, 1981.

Lee01
M. L. Lee, C. W. Leitz, Z. Cheng, A. J. Pitera, T. Langdo, M. T. Currie, G. Taraschi, E. A. Fitzgerald, and D. A. Antoniadis.
Strained Ge channel p-type metal-oxide-semiconductor field-effect transistors grown on /Si virtual substrates.
Appl.Phys.Lett., vol. 79, no. 20, pages 3344-3346, 2001.

Lehmann72
G. Lehmann, and M. Taut.
On the Numerical Calculation of the Density of States and Related Properties.
Phys. Status Solidi B, vol. 54, pages 469-477, 1972.

Leitz01
C. W. Leitz, M. T. Currie, M. L. Lee, Z.-Y. Cheng, D. A. Antoniadis, and E. A. Fitzgerald.
Hole mobility enhancements in strained Si/ $ Si_\bgroup 1 - y
\egroup Ge_y$ p-type metal-oxide-semiconductor field-effect transistors grown on relaxed virtual substrates.
Appl.Phys.Lett., vol. 79, no. 25, pages 4246-4248, 2001.

Levinshtein99
M. Levinshtein, S. Rumyantsev, and M. Shur, editors.
``Handbook Series on Semiconductor Parameters'', volume 1,2.
World Scientific, London, 1999.

Maes90
W. Maes, K. De Meyer, and R. Van Overstraeten.
Impact Ionization in Silicon: A Review and Update.
Solid-State Electron., vol. 33, no. 6, pages 705-718, 1990.

Masetti83
G. Masetti, M. Severi, and S. Solmi.
Modeling of Carrier Mobility Against Carrier Concentration in Arsenic-, Phosphorus- and Boron-Doped Silicon.
IEEE Trans.Electron Devices, vol. ED-30, no. 7, pages 764-769, 1983.

McIntyre66
R.J. McIntyre.
Multiplication noise in uniform avalanche diodes.
IEEE Trans.Electron Devices, vol. ED-13, pages 164-168, 1966.

Miller60
A. Miller, and E. Abrahams.
Impurity Conduction at Low Concentrations.
Phys.Rev., vol. 120, pages 745-755, 1960.

Nishimura65
H. Nishimura.
Impurity Conduction in the Intermediate Concentration Region.
Phys.Rev., vol. 138, no. 3A, pages A815-A821, 1965.

Overstraeten70
R. van Overstraeten, and H. de Man.
Temperature Dependence on the Electron Impact Ionization Coefficient in Silicon.
Solid State Electron., vol. 13, pages 583-608, 1970.

Papoulis84
A. Papoulis.
``Probability, random variables, and stochastic processes''.
Mc-Graw Hill, 1984.

Petroff86
M.D. Petroff, and M. G. Stapelbroek.
Blocked impurity band detectors.
U.S. Patent No. 4568960, 1986.

Petroff87
M. D. Petroff, M. G. Stapelbroek, and W. A. Kleinhans.
Detection of individual 0.4-28 micron wavelength photons via impurity-impact ionization in a solid-state photomultiplier.
Appl.Phys.Lett., vol. 51, pages 406-408, 1987.

R.-Bolívar05
S. R.-Bolívar, F. M. Gómez-Campos, and J. E. Carceller.
Simple analytical valence band structure including warping and non-parabolicity to investigate hole transport in Si and Ge.
Semicond. Sci.Technol., vol. 20, no. 1, pages 16-22, 2005.

Reggiani73
L. Reggiani, and C. Calandra.
Bloch states mixing in Si conduction band.
Physics Letters A, vol. 43, pages 339-340, 1973.

Rieger93
M.M. Rieger, and P. Vogl.
Electronic-Band Parameters in Strained Si Ge Alloys on Si Ge Substrates.
Phys. Rev. B, vol. 48, pages 14276-14287, 1993.

Ritenour03
A. Ritenour, S. Yu, M. L. Lee, N. Lu, W. Bai, A. Pitera, E. A. Fitzgerald, D. L. Kwong, and D. A. Antoniadis.
Epitaxial Strained Germanium P-MOSFETs with Gate Dielectric and TaN Gate Electrode.
Proc.Intl.Electron Devices Meeting, pages 433-436, 2003.

Sclar56
N. Sclar.
Neutral Impurity Scattering in Semiconductors.
Phys.Rev., vol. 104, no. 6, pages 1559-1561, 1956.

Shklovskii84
B. I. Shklovskii, and A. L. Efros.
``Electronic properties of doped semiconductors''.
Springer, Berlin, 1984.

SIA06
Semiconductor Industry Association SIA.
International Technology Roadmap for Semiconductors - 2006 Update, 2006.
http://www.itrs.net.

Sinitsa02
S. P. Sinitsa.
Simulation of avalanche multiplication of electrons in photodetectors with blocked hopping conduction.
Semiconductors, vol. 36, no. 5, pages 588-591, 2002.

Skotnicki05
T. Skotnicki, J. A. Hutchby, Tsu-Jae King, H. S. P. Wong, and F. Boeuf.
The end of CMOS scaling: toward the introduction of new materials and structural changes to improve MOSFET performance.
IEEE Circuits & Devices, vol. 21, pages 16-26, 2005.

Slotboom87
J. W. Slotboom, G. Streutker, G. J. T. Davids, and P. B. Hartog.
Surface Impact Ionization in Silicon Devices.
Proc.Intl.Electron Devices Meeting, pages 494-497, 1987.

Stanley98
J. Stanley, and N. Goldsman.
New irreducible wedge for scattering rate calculations in full-zone Monte Carlo simulations.
VLSI Design, vol. 8, no. 1-4, pages 413-417, 1998.

Stetson86
S. B. Stetson, D. B. Reynolds, M. G. Stapelbroek, and R. L. Stermer.
Design and performance of blocked-impurity-band detector focal plane arrays.
In H. Nakamura, editor, Infrared detectors, sensors, and focal plane arrays; Proceedings of the Meeting, San Diego, CA, Aug. 21, 22, 1986 (A88-12689 02-35). Bellingham, WA, Society of Photo-Optical Instrumentation Engineers, volume 686 of Presented at the Society of Photo-Optical Instrumentation Engineers (SPIE) Conference, pages 48-65, 1986.

Stillman77
G. E. Stillman, and C. M. Wolfe.
Avalanche Photodiodes.
In R.K. Willardson, and A.C. Beer, editors, Semiconductors and Semimetals, volume 12, New York, 1977. Academic Press.

Sze81
S. M. Sze.
``Physics of semiconductor devices''.
Wiley, New York, second edition, 1981.

Szmulowicz80
F. Szmulowicz, and R. Baron.
The effect of light attenuation on quantum efficiency for transverse and longitudinal responsivity and detectivity.
Infrared Physics, vol. 20, pages 385-391, 1980.

Szmulowicz86
F. Szmulowicz, K. T. Bloch, and F. L. Madarasz.
Effect of light attenuation on the responsivity and detectivity of transverse and longitudinal detectors.
J.Appl.Phys., vol. 60, pages 4300-4307, 1986.

Szmulowicz87
F. Szmulowicz, and F. L. Madarsz.
Blocked impurity band detectors: An analytical model - Figures of merit.
J.Appl.Phys., vol. 62, pages 2533-2540, 1987.

Uchida04
K. Uchida, R. Zednik, C.-H. Lu, H. Jagannathan, J. McVittie, P. C. McIntyre, and Y. Nishi.
Experimental study of biaxial and uniaxial strain effects on carrier mobility in bulk and ultrathin-body SOI MOSFETs.
In Proc.Intl.Electron Devices Meeting, pages 229-232, 2004.

Uchida05
K. Uchida, T. Krishnamohan, K.C. Saraswat, and Y.Nishi.
Physical mechanisms of electron mobility enhancement in uniaxial stressed MOSFETs and impact of uniaxial stress engineering in ballistic regime.
In Proc.Intl.Electron Devices Meeting, pages 135-138, 2005.

Ungersboeck07a
E. Ungersboeck.
Advanced Modeling of Strained CMOS Technology.
PhD thesis, Vienna Technical University, 2007.
http://www.iue.tuwien.ac.at/phd/ungersboeck/.

Ungersboeck07b
E. Ungersboeck, S. Dhar, G. Karlowatz, H. Kosina, and S. Selberherr.
Physical Modeling of Electron Mobility Enhancement for Arbitrarily Strained Silicon.
Journal of Computational Electronics, vol. 6, no. 1-3, pages 55-58, 2007.

Ungersboeck07c
E. Ungersboeck, S. Dhar, G. Karlowatz, V. Sverdlov, H. Kosina, and S. Selberherr.
The Effect of General Strain on the Band Structure and Electron Mobility of Silicon.
IEEE Trans.Electron Devices, vol. 54, no. 9, pages 2183-2190, 2007.

Wagner04
Martin Wagner.
A base Library for Full Band Monte Carlo Simulations.
Diplomarbeit, Institut für Mikroelektronik, Technische Universität Wien, März 2004.

Wang06
E. X. Wang, L. Shifren, B. Obradovic, R. Kotlyar, S. Cea, M. Stettler, and M. D. Giles.
Physics of Hole Transport in Strained Silicon MOSFET Inversion Layers.
IEEE Trans.Electron Devices, vol. 53, no. 8, pages 1840-1851, 2006.

Welser92
J. Welser, J. L. Hoyt, and J. F. Gibbons.
NMOS and PMOS transistors fabricated in strained silicon/relaxed silicon-germanium structures.
In Proc.Intl.Electron Devices Meeting, pages 1000-1002, 1992.

Welser94
J. Welser, J. L. Hoyt, and J. F. Gibbons.
Electron Mobility Enhancement in Strained-Si N-Type Metal-Oxide-Semiconductor Field-Effect Transistors.
IEEE Electron Device Lett., vol. 15, no. 3, pages 100-102, 1994.

Yamada95
T. Yamada, and D. K. Ferry.
Monte Carlo Simulation of Hole Transport in Strained .
Solid State Electronics, vol. 38, no. 4, pages 881-890, 1995.

Yu03
P. Yu, and M. Cardona.
``Fundamentals of Semiconductors''.
Springer, 2003.


next up previous contents
Next: Own Publications Up: Dissertation Gerhard Karlowatz Previous: 7. Summary and Conclusions

G. Karlowatz: Advanced Monte Carlo Simulation for Semiconductor Devices