User Tools

Site Tools


====== Damien Querlioz ====== ===== Biography ===== I received the Predoctoral Training from the Ecole Normale Superieure Paris, and the Ph.D. degree from University Paris-Sud in 2008. I was a Postdoctoral Scholar at Stanford University, USA, in 2009 and at the Commissariat a l'Energie Atomique, France, in 2010. I then joined the University of Paris-Sud as a permanent CNRS Researcher, to develop new concepts in nanoelectronics relying on bio-inspiration. I focus especially on stochastic approaches. My research interests have also included the physics of advanced nanodevices. I have developed the Wigner Monte Carlo approach to simulate and understand quantum transport in nanometer-scale devices. I have coauthored the book "The Wigner Monte-Carlo Method for Nanoelectronic Devices" (London: ISTE; Hoboken: Wiley, 2010) with Philippe Dollfus. I serve as an expert in nanoelectronics at the French Observatory of Micro and Nanotechnology, as a project reviewer for the French National Research Agency (ANR). My research is funded by the Seventh Framework Programme of the European Union (FETOPEN BAMBI), Agence Nationale de la Recherche, Région Ile-de-France/DIM NANO-K and Ministère de l'écologie, du développement durable et de l'énergie. In recent years, I also received funding from CNRS/Mission pour l'Interdisciplinarité and CNRS/INSIS. ===== Wigner-specific research ===== (selection) * [[Damien Querlioz]] and [[Philippe Dollfus]], [[|The Wigner Monte-Carlo Method for Nanoelectronic Devices: A Particle Description of Quantum Transport and Decoherence]] (John Wiley & Sons, 2013) * P. Schwaha, [[Damien Querlioz]], [[Philippe Dollfus]], J. Saint-Martin, [[Mihail (Mixi) Nedjalkov]], and [[Siegfried Selberherr]], [[|Decoherence Effects in the Wigner Function Formalism]], J. Comput. Electron. **12**, 388 (2013) * [[Mihail (Mixi) Nedjalkov]], [[Siegfried Selberherr]], [[David K. Ferry]], [[Dragica Vasileska]], [[Philippe Dollfus]], [[Damien Querlioz]], [[Ivan Dimov]], and P. Schwaha, [[|Physical Scales in the Wigner-Boltzmann Equation]], Ann. Phys. **328**, 220 (2012) * D. Querlioz and P. Dollfus, [[|The Wigner Monte Carlo Method for Nanoelectronic Devices]] (John Wiley & Sons, 2010) * [[Damien Querlioz]], Jerome Saint-Martin, and [[Philippe Dollfus]], [[|Implementation of the Wigner-Boltzmann transport equation within particle Monte Carlo simulation]], J. Comput. Electron. **9**, 224 (2010) * [[Damien Querlioz]], Huu-Nha Nguyen, Jerome Saint-Martin, Arnaud Bournel, Sylvie Galdin-Retailleau, and [[Philippe Dollfus]], [[|Wigner-Boltzmann Monte Carlo approach to nanodevice simulation: from quantum to semiclassical transport]], J. Comput. Electron. **8**, 324 (2009) * Huu-Nha Nguyen, [[Damien Querlioz]], Sylvie Galdin-Retailleau, Arnaud Bournel, and [[Philippe Dollfus]], [[|Wigner Monte Carlo simulation of CNTFET: Comparison between semi-classical and quantum transport]], Proc. IWCE, 257 (2009) * [[Damien Querlioz]], Jerome Saint-Martin, Arnaud Bournel, and [[Philippe Dollfus]], [[|Wigner Monte Carlo simulation of phonon-induced electron decoherence in semiconductor nanodevices]], Phys. Rev. B **78**, 165306 (2008) * [[Damien Querlioz]], Jerome Saint-Martin , Van-Nam Do, Arnaud Bournel, and [[Philippe Dollfus]], [[|A study of quantum transport in end-of-roadmap DG-MOSFETs using a fully self-consistent Wigner Monte Carlo approach]], IEEE T. Nanotechnol. **5**, 737 (2006) * [[Damien Querlioz]], [[Philippe Dollfus]], Van-Nam Do, Bournel, Arnaud, et al., [[|An improved Wigner Monte-Carlo technique for the self-consistent simulation of RTDs]], J. Comput. Electron. **5**, 443 (2006) ===== Affiliation(s) ===== * Group Leader, CNRS, Université Paris-Sud, France ===== Additional information ===== * [[|Group Website]]

damien_querlioz.txt · Last modified: 2019/10/30 18:31 by weinbub