3.5.2 The GUNDLACH Method

The GUNDLACH method [137] provides an analytical solution of SCHRÖDINGER's equation for a linear energy barrier. The one-dimensional time-independent SCHRÖDINGER equation in this case reads

$\displaystyle \frac{\ensuremath {\mathrm{d}}^2}{\ensuremath {\mathrm{d}}x^2} \Psi(x) + \frac{2m}{\hbar^2} \left({\mathcal{E}}- W(x) \right) \Psi(x) = 0 \ ,$ (3.61)

with the linear potential energy $ W(x)$ between the points $ x_0$ and $ x_1$, $ W_0 = W(x_0)$, and $ W_1 = W(x_1)$,

$\displaystyle W(x) = W_0 + (x - x_0) \frac{W_1 - W_0}{x_1 - x_0}$ (3.62)

for $ x_0 < x < x_1$. Using the abbreviations

\begin{displaymath}\begin{array}{l} \displaystyle l = - \left( \frac{\hbar ^ 2}{...
...}- W_0 + x_0 \frac{W_1 - W_0}{x_1 - x_0}\right) \ , \end{array}\end{displaymath} (3.63)

and $ u(x) = \lambda - x / l$, expression (3.61) turns into

$\displaystyle \frac{\ensuremath {\mathrm{d}}^2}{\ensuremath {\mathrm{d}}x^2} \Psi(x) -\frac{1}{l^2} u(x) \Psi(x) = 0 \ .$ (3.64)

With

$\displaystyle \frac{\ensuremath {\mathrm{d}}^2}{\ensuremath {\mathrm{d}}x^2} \P...
...c{\ensuremath {\mathrm{d}}^2}{\ensuremath {\mathrm{d}}u^2}\Psi\left(u(x)\right)$ (3.65)

SCHRÖDINGER's equation evolves into the AIRY3.7 differential equation

$\displaystyle \frac{\ensuremath {\mathrm{d}}^2}{\ensuremath {\mathrm{d}}u^2} \Psi\left(u(x)\right) - u(x) \Psi\left(u(x)\right) = 0 \ .$ (3.66)

The solutions of this differential equation are the AIRY functions $ \ensuremath{\mathrm{Ai}}\left(u(x)\right)$ and $ \ensuremath{\mathrm{Bi}}\left(u(x)\right)$ [138], which are depicted in Fig. 3.10 together with their derivatives. The wave functions consist of linear superpositions of these AIRY functions

$\displaystyle \Psi(x) = A \ensuremath{\mathrm{Ai}}\left(u(x)\right) + B \ensuremath{\mathrm{Bi}}\left(u(x)\right) \ ,$ (3.67)

where the function $ u(x)$ is given as

$\displaystyle u(x) = - \left( \frac{2m}{\hbar^2} \right)^{1/3} \left( \frac{x_1 - x_0}{W_1 - W_0} \right)^{2/3} \left({\mathcal{E}}- W(x) \right) \ .$ (3.68)

Figure 3.10: The AIRY functions Ai and Bi and their derivatives.
\includegraphics[width=0.48\linewidth]{figures/Ai} \includegraphics[width=0.48\linewidth]{figures/Bi}

Assuming a constant electron mass in the dielectric, GUNDLACH derives an expression for the transmission coefficient

$\displaystyle TC = \frac{k_n}{k_1} \frac{4}{\pi^2}\left( \left( \frac{z'}{k_1} ...
...frac{k_n}{z'}B\right)^2 + \left( \frac{k_n}{k_1}C + D\right)^2 \right)^{-1} \ ,$ (3.69)

where the abbreviations

\begin{displaymath}\begin{array}{rclcl} A &=& \ensuremath{\mathrm{Ai}}'(z_0) \en...
...mathrm{Ai}}'(z_s) \ensuremath{\mathrm{Bi}}(z_0) \ , \end{array}\end{displaymath} (3.70)

have been used and the symbols $ z_0$, $ z_s$, and $ z'$ are given by

\begin{displaymath}\begin{array}{cc} z_0 = (\ensuremath {\mathrm{q}}\Phi_0 - {\m...
...emath {\mathrm{q}}(\Phi - \Phi_0)}\right)^{2/3} \ , \end{array}\end{displaymath} (3.71)

and

\begin{displaymath}\begin{array}{cc} z' = -\left( \displaystyle\frac{a^2}{4} \di...
...{2}{\hbar} \sqrt{2\ensuremath{m_\mathrm{diel}}} \ . \end{array}\end{displaymath} (3.72)

The symbols $ \ensuremath {\mathrm{q}}\Phi$ and $ \ensuremath {\mathrm{q}}\Phi_0$ denote the two edges of the energy barrier as shown in Fig. 3.9. The GUNDLACH method is frequently used in the literature [121,139] and implemented in device simulators. Numerical problems may occur for flat barriers ( $ \Phi \approx
\Phi_0$) due to the exponential increase of the AIRY functions $ \ensuremath{\mathrm{Bi}}$ and $ \ensuremath{\mathrm{Bi}}'$ for positive arguments. In practical implementations the values of $ z_0$ and $ z_s$ have been bounded to values below $ \approx 200$ to avoid floating point overflow.

A. Gehring: Simulation of Tunneling in Semiconductor Devices