next up previous contents
Next: 4 Analytical Solution of Up: 8 Numerical Handling of Previous: 2 Discretization of the


3 Discretization of the Three-Stream Mulvaney-Richardson Model

First we consider dopant continuity equation of Mulvaney-Richardson model (3.45). The local change of dopants is due to the divergence of fluxes of dopant-interstitial and dopand vacancy pairs,

$\displaystyle \frac{\partial C_A}{\partial t}=\nabla\cdot(\mathbf{J}_{AI}+\mathbf{J}_{AV}).$     (154)

In this model the diffusion coefficient $ D_A$ of the point defect-dopant pairs is considered constant and we can write (based on (3.45)),

$\displaystyle \nabla\cdot\mathbf{J}_{AI}= \frac{f_I D_A}{C_{I}^{eq}}\Delta (C_I C_A) + \frac{f_I D_A}{C_{I}^{eq}}\nabla(C_I C_A \nabla ($ln$\displaystyle  n)),$ (155)

$\displaystyle \nabla\cdot\mathbf{J}_{AV}=\frac{(1-f_I) D_A}{C_{V}^{eq}}\Delta (C_V C_A) + \frac{(1-f_I) D_A}{C_{V}^{eq}}\nabla(C_V C_A \nabla ($ln$\displaystyle  n)).$ (156)

In order to obtain a weak formulation of (3.92) on the single element $ T\in T_h(\Omega)$ we multiply both sides of the equation with the basis function $ \varphi_k$, and integrate over $ T$,

$\displaystyle \int_T\nabla\cdot\mathbf{J}_{AI}  \varphi_k d\Omega = -\frac{f_...
...a \varphi_k d\Omega +\frac{f_I D_A}{C_{I}^{eq}}\int_T \nabla(C_I C_A \nabla ($ln$\displaystyle  n)) \varphi_k d\Omega=$ (157)

$\displaystyle =-\frac{f_I D_A}{C_{I}^{eq}}\int_T \nabla(C_I C_A)\nabla \varphi_k d\Omega-\frac{f_I D_A}{C_{I}^{eq}}\int_T C_I C_A \nabla ($ln$\displaystyle  n) \nabla \varphi_k d\Omega.$ (158)

The nonlinear terms of (3.95), $ C_I(\mathbf{x}) C_A(\mathbf{x})$, $ \nabla(C_I(\mathbf{x}) C_A(\mathbf{x}))$, and ln$  n$ are expressed by the basis nodal functions $ \varphi_1,\varphi_2,\varphi_3,\varphi_4$ on the following way,

$\displaystyle C_I(\mathbf{x}) C_A(\mathbf{x}) = \sum_{i,j=1}^4 C_{I,i}C_{A,j}\varphi_i(\mathbf{x}) \varphi_j(\mathbf{x}),$    

$\displaystyle \nabla(C_I(\mathbf{x}) C_A(\mathbf{x})) = \sum_{i,j=1}^4 C_{I,i}C_{A,j}\nabla(\varphi_i(\mathbf{x}) \varphi_j(\mathbf{x})),$ (159)

$\displaystyle \nabla($ln$\displaystyle  n)=\frac{1}{\sqrt{4n_{i}^{2}+C_{A,m}^{2}}} \sum_{i=1}^4 C_{A,i}\nabla\varphi_i(\mathbf{x}).$    

In the last expression we used the relationship (3.13) for the electron concentration $ n$ in the case of single charged dopant. We substitute the relationships (3.96) into (3.95) and obtain,
$\displaystyle \int_T \nabla\cdot\mathbf{J}_{AI} \varphi_k d\Omega=-\frac{f_I ...
...^4C_{I,i}C_{A,j}\int_T \nabla (\varphi_i
\varphi_j)\nabla \varphi_k  d\Omega -$      
$\displaystyle -\frac{f_I
D_A}{C_{I}^{eq}\sqrt{4n_{i}^{2}+C_{A,m}^{2}}}\sum_{i,j...
...}C_{A,l}\int_T \varphi_i
\varphi_j \nabla \varphi_l \nabla \varphi_k  d\Omega.$     (160)

To complete the formulation of the weak equation form we have to evaluate following two integrals,

$\displaystyle \int_T \nabla (\varphi_i \varphi_j)\nabla \varphi_k  d\Omega=det...
...}_i \varphi^{e}_j)\mathbf{\Lambda}\nabla_e \varphi^{e}_k  d\zeta d\eta d\xi,$ (161)

$\displaystyle \int_T \varphi_i \varphi_j \nabla \varphi_l \nabla \varphi_k  d\...
...a_e \varphi^{e}_l \mathbf{\Lambda}\nabla_e \varphi^{e}_k  d\zeta d\eta d\xi,$ (162)

here we transfer the calculation to the normed $ (\xi,\zeta,\eta)$ coordinate system. Transformation of the gradient operators is done by multiplication with the matrix $ \mathbf{\Lambda}=\mathbf{(J^{-1})^T}$.
$\displaystyle \mathbf{\Lambda}\nabla_e (\varphi^{e}_i \varphi^{e}_j)\mathbf{\La...
...rtial\eta} \\
\frac{\partial(\varphi^{e}_k)}{\partial\zeta} \\
\end{bmatrix}=$      
$\displaystyle =\Bigl(\Lambda_{0,0}\frac{\partial(\varphi^{e}_i
\varphi^{e}_j)}{...
...\partial\eta}+\Lambda_{0,2}\frac{\partial(\varphi^{e}_k)}{\partial\zeta}\Bigr)+$      
$\displaystyle +
\Bigl(\Lambda_{1,0}\frac{\partial(\varphi^{e}_i
\varphi^{e}_j)}...
...tial\eta}\!+\!\Lambda_{1,2}\frac{\partial(\varphi^{e}_k)}{\partial\zeta}\Bigr)+$      
$\displaystyle +
\Bigl(\Lambda_{2,0}\frac{\partial(\varphi^{e}_i
\varphi^{e}_j)}...
...l\eta}+\Lambda_{2,2}\frac{\partial(\varphi^{e}_k)}{\partial\zeta}\Bigr),\quad $     (163)

Furthermore we rearrange (3.100),

$\displaystyle \frac{\partial(\varphi^{e}_i
\varphi^{e}_j)}{\partial\xi}\frac{\p...
...bda_{0,0}\Lambda_{0,1}+\Lambda_{1,0}\Lambda_{1,1}+\Lambda_{2,0}\Lambda_{2,1})
+$      
$\displaystyle +\frac{\partial(\varphi^{e}_i
\varphi^{e}_j)}{\partial\xi}\frac{\...
...mbda_{0,1}\Lambda_{0,0}+\Lambda_{1,1}\Lambda_{1,0}+\Lambda_{2,1}\Lambda_{2,0})+$      
$\displaystyle +
\frac{\partial(\varphi^{e}_i
\varphi^{e}_j)}{\partial\eta}\frac...
...mbda_{0,1}\Lambda_{0,2}+\Lambda_{1,1}\Lambda_{1,2}+\Lambda_{2,1}\Lambda_{2,2})+$      
$\displaystyle +\frac{\partial(\varphi^{e}_i
\varphi^{e}_j)}{\partial\zeta}\frac...
...mbda_{0,2}\Lambda_{0,1}+\Lambda_{1,2}\Lambda_{1,1}+\Lambda_{2,2}\Lambda_{2,1})+$      


$\displaystyle +\frac{\partial(\varphi^{e}_i\varphi^{e}_j)}{\partial\zeta}\frac{...
...^{e}_k)}{\partial\zeta}(\Lambda_{0,2}^{2}+\Lambda_{1,2}^{2}+\Lambda_{2,2}^{2}).$ (164)

and introduce the matrix $ \mathbf{K}_{\xi}$, $ \mathbf{K}_{\eta}$, $ \mathbf{K}_{\zeta}$.
$\displaystyle {K}_{\xi}^{i,j}=\int_{\xi=0}^{1}\int_{\eta=0}^{1-\xi}\int_{\zeta=...
...frac{\partial(\varphi^{e}_i
\varphi ^{e}_j)}{\partial\xi} d\zeta d\eta d\xi,$      
$\displaystyle {K}_{\eta}^{i,j}=\int_{\xi=0}^{1}\int_{\eta=0}^{1-\xi}\int_{\zeta...
...rac{\partial(\varphi^{e}_i
\varphi ^{e}_j)}{\partial\eta} d\zeta d\eta d\xi,$     (165)
$\displaystyle {K}_{\zeta}^{i,j}=\int_{\xi=0}^{1}\int_{\eta=0}^{1-\xi}\int_{\zet...
...rac{\partial(\varphi^{e}_i
\varphi^{e}_j)}{\partial\zeta} d\zeta d\eta d\xi.$      

The values of the integrals (3.98) and (3.99) can be expressed as functions of local node indexes,
$\displaystyle \alpha_{T}(i,j,k)=\int_T \nabla (\varphi_i
\varphi_j)\nabla \varp...
...i,j}( \varphi_{\xi}^{k}(\Lambda_{0,0}^{2}+\Lambda_{1,0}^{2}+\Lambda_{2,0}^{2})+$      
$\displaystyle +\varphi_{\eta}^{k}(\Lambda_{0,0}\Lambda_{0,1}+\Lambda_{1,0}\Lamb...
...bda_{0,0}\Lambda_{0,2}+\Lambda_{1,0}\Lambda_{1,2}+\Lambda_{2,0}\Lambda_{2,2}))+$      
$\displaystyle +
{K}_{\eta}^{i,j}(\varphi_{\xi}^{k}(\Lambda_{0,1}\Lambda_{0,0}+\...
...,0})+\varphi_{\eta}^{k}(\Lambda_{0,1}^{2}+\Lambda_{1,1}^{2}+\Lambda_{2,1}^{2})+$      
$\displaystyle + \varphi_{\zeta}^{k}(\Lambda_{0,1}\Lambda_{0,2}+\Lambda_{1,1}\Lambda_{1,2}+\Lambda_{2,1}\Lambda))+$      
$\displaystyle +{K}_{\zeta}^{i,j}(\varphi_{\xi}^{k}(\Lambda_{0,2}\Lambda_{0,0}+\...
...mbda_{0,2}\Lambda_{0,1}+\Lambda_{1,2}\Lambda_{1,1}+\Lambda_{2,2}\Lambda_{2,1})+$      
$\displaystyle + \varphi_{\zeta}^{k}(\Lambda_{0,2}^{2}+\Lambda_{1,2}^{2}+\Lambda_{2,2}^{2}))),$     (166)


$\displaystyle \beta_{T}(i,j,l,k)=\int_T \varphi_i
\varphi_j \nabla \varphi_l \n...
...^{l}( \varphi_{\xi}^{k}(\Lambda_{0,0}^{2}+\Lambda_{1,0}^{2}+\Lambda_{2,0}^{2})+$      
$\displaystyle +\varphi_{\eta}^{k}(\Lambda_{0,0}\Lambda_{0,1}+\Lambda_{1,0}\Lamb...
...bda_{0,0}\Lambda_{0,2}+\Lambda_{1,0}\Lambda_{1,2}+\Lambda_{2,0}\Lambda_{2,2}))+$      
$\displaystyle +
{\varphi}_{\eta}^{i}(\varphi_{\xi}^{k}(\Lambda_{0,1}\Lambda_{0,...
...,0})+\varphi_{\eta}^{k}(\Lambda_{0,1}^{2}+\Lambda_{1,1}^{2}+\Lambda_{2,1}^{2})+$      
$\displaystyle + \varphi_{\zeta}^{k}(\Lambda_{0,1}\Lambda_{0,2}+\Lambda_{1,1}\Lambda_{1,2}+\Lambda_{2,1}\Lambda))+$      
$\displaystyle +{\varphi}_{\zeta}^{i}(\varphi_{\xi}^{k}(\Lambda_{0,2}\Lambda_{0,...
...mbda_{0,2}\Lambda_{0,1}+\Lambda_{1,2}\Lambda_{1,1}+\Lambda_{2,2}\Lambda_{2,1})+$      
$\displaystyle + \varphi_{\zeta}^{k}(\Lambda_{0,2}^{2}+\Lambda_{1,2}^{2}+\Lambda_{2,2}^{2}))).$     (167)

In (3.103) and (3.104), for the sake of simplicity, we used the abbervations, $ \varphi_{X}^k=\frac{\partial\varphi^{e}_k}{\partial X}$ for $ X=\xi,\eta,\zeta$. It can easily been shown that the functions $ \alpha_T(i,j,k)$ and $ \beta_T(i,j,l,k)$ satisfy following relations,
$\displaystyle \sum_{k=1}^4\alpha_T(i,j,k)=0,  \sum_{i=1}^4\alpha_T(i,j,k)=K_{jk}(T),  \sum_{j=1}^4\alpha_T(i,j,k)=K_{ik}(T),$      
$\displaystyle \sum_{k=1}^4\beta_T(i,j,l,k)=0,  \sum_{l=1}^4\beta_T(i,j,l,k)=0,  \sum_{i,j=1}^4\beta_T(i,j,l,k)=K_{lk}(T).$     (168)

We introduce now the backward Euler time discretization scheme for (3.91) and by applying the functions $ \alpha_{T}(i,j,k)$ and $ \beta_{T}(i,j,l,k)$ we write the $ \ell_{k,1}$ functions (for $ k=1,2,3,4$),

$\displaystyle \ell_{k,1}^e(\mathbf{c}_A^n,\mathbf{c}_I^n,\mathbf{c}_V^n)=\frac{...
...I\frac{C_{I,i}^n}{C_{I}^{eq}}+(1-f_I)\frac{C_{V,i}^n}{C_{V}^{eq}}\Bigr)\Bigr\}+$ (169)

$\displaystyle +\frac{D_A }{\sqrt{4n_{i}^{2}+(C_{A,m}^n)^{2}}}\sum_{i,j,l=1}^4\B...
...I\frac{C_{I,i}^n}{C_{I}^{eq}}+(1-f_I)\frac{C_{V,i}^n}{C_{V}^{eq}}\Bigr)\Bigr\},$ (170)

and residuum vector $ R_{k,1}^e$ as
$\displaystyle R_{k,1}^e(\mathbf{c}_A^n,\mathbf{c}_I^n,\mathbf{c}_V^n)=\ell_{k,1...
...thbf{c}_I^n,\mathbf{c}_V^n)-\frac{1}{\Delta t}\sum_{i=1}^4 M_{ik}C_{A,i}^{n-1}.$     (171)

Equations (3.74) and (3.75) of the Mulvaney-Richardson model have the same structure, it is sufficient, if we consider in more detail only (3.74),

$\displaystyle \frac{\partial C_I}{\partial t}=D_I\Delta C_I - k_{f} (
C_I C_V - C_{I}^{eq} C_{V}^{eq})
+\nabla \cdot \mathbf{J}_{AI}.$     (172)

We need to consider only $ D_I\Delta C_I - k_{f} (
C_I C_V - C_{I}^{eq} C_{V}^{eq})$, the rest of the equation has already been treated above. Again, we use linear basis nodal functions $ \varphi_k$ and apply Green's theorem,
$\displaystyle -D_I\sum_{i,=1}^{4}C_{I,i}\int_T \nabla \varphi_i \nabla Nk d\Om...
... \varphi_j \varphi_kd\Omega + k_fC_{I}^{eq} C_{V}^{eq}\int_T \varphi_k d\Omega.$     (173)

we set $ \gamma_T(i,j,k)=\int_T \varphi_i \varphi_j \varphi_k d\Omega$, and proceed,
$\displaystyle -D_I\sum_{i=1}^{4}C_{I,i} K_{i,k} - k_f\sum_{i,j=1}^{4}C_{I,i}C_{V,j}\gamma_T(i,j,k) + k_f C_{I}^{eq} C_{V}^{eq}V_k.$     (174)

Finally, we have the discretizied form of equation (3.74),
$\displaystyle \ell_{k,2}^e(\mathbf{c}_A^n,\mathbf{c}_I^n,\mathbf{c}_V^n)=\sum_{...
...j=1}^{4}C^{n}_{I,i}C_{V,j}^{n}\gamma_T(i,j,k) - C_{I}^{eq} C_{V}^{eq}V_k\Bigr)+$      
$\displaystyle +\frac{f_I D_A}{C_{I}^{eq}}\sum_{i,j=1}^{4}\Bigl\{C^{n}_{A,i}\Big...
...{2}+(C^n_{A,m})^2}}\sum_{l=1}^{4}C_{I,l}^{n}\beta_T(i,j,l,k)\Bigr)\Bigr\},\quad$     (175)

and the residuum vector $ R_{k,2}^e$ as,
$\displaystyle R_{k,2}^e(\mathbf{c}_A^n,\mathbf{c}_I^n,\mathbf{c}_V^n)=\ell_{k,2...
...thbf{c}_I^n,\mathbf{c}_V^n)-\frac{1}{\Delta t}\sum_{i=1}^4 M_{ik}C_{I,i}^{n-1}.$     (176)

and analogously for the vacancy balance equation,
$\displaystyle \ell_{k,3}^e(\mathbf{c}_A^n,\mathbf{c}_I^n,\mathbf{c}_V^n)=\sum_{...
...j=1}^{4}C^{n}_{I,i}C_{V,j}^{n}\gamma_T(i,j,k) - C_{I}^{eq} C_{V}^{eq}V_k\Bigr)+$      
$\displaystyle +\frac{(1-f_I) D_A}{C_{V}^{eq}}\sum_{i,j=1}^{4}\Bigl\{C^{n}_{A,i}...
...{2}+(C^n_{A,m})^2}}\sum_{l=1}^{4}C_{V,l}^{n}\beta_T(i,j,l,k)\Bigr)\Bigr\},\quad$     (177)

and the corresponding residuum vector $ R_{k,3}^e$ as,
$\displaystyle R_{k,3}^e(\mathbf{c}_A^n,\mathbf{c}_I^n,\mathbf{c}_V^n)=\ell_{k,3...
...thbf{c}_I^n,\mathbf{c}_V^n)-\frac{1}{\Delta t}\sum_{i=1}^4 M_{ik}C_{V,i}^{n-1}.$     (178)

Using the functions $ \ell^e_{k,1}$, $ \ell^e_{k,2}$, and $ \ell^e_{k,3}$ for $ k=1,2,3,4$ we construct the nucleus matrix $ \mathbf{\Pi}(T)$ of the diffusion problem,

$\displaystyle \mathbf{\Pi}(T)=\frac{\partial (\ell_{1,1}^e,\ell_{1,2}^e,\ell_{1...
...3,3}^e,\ell_{3,4}^e)}{\partial (\mathbf{c}_A^n,\mathbf{c}_I^n,\mathbf{c}_V^n)}.$ (179)

Note that the global matrix $ \mathbf{G}$ in this case has rank $ 3\cdot N$.


next up previous contents
Next: 4 Analytical Solution of Up: 8 Numerical Handling of Previous: 2 Discretization of the

J. Cervenka: Three-Dimensional Mesh Generation for Device and Process Simulation