next up previous contents
Next: 5 Numerical Handling of Up: 8 Numerical Handling of Previous: 3 Discretization of the

4 Analytical Solution of the Segregation Problem for One Dimension

In order to assess the numerical scheme for the problem described in Section 3.5.3 it is useful to construct an analytical solution for a special one-dimensional case. For the sake of simplicity, we consider in both segments intrinsic diffusion (Section 3.3.1). As segment $ S_0$ the region $ x>0$ is assumed and as segment $ S_1$ region $ x<0$. The one-dimensional segregation problem fullfils the following initial and interface conditions,

$\displaystyle C_0(x,0) = C_{init}$   for$\displaystyle   x>0$   and$\displaystyle \quad C_1(x,0) = 0$   for$\displaystyle    x<0,$ (180)

$\displaystyle D_0 \frac{\partial C_0}{\partial x} = - h \Bigl(C_1-\frac{C_0}{m}\Bigr)  $and (181)

$\displaystyle D_0 \frac{\partial C_0}{\partial x} = D_1 \frac{\partial C_1}{\partial x},$   at interface$\displaystyle    x=0.$ (182)

Note that condition (3.117) also means that the media from both sides of the interface has an infinite length. We are searching for the solution of the problem given by (3.30), (3.117), (3.118) and (3.119) in the form,

for$\displaystyle   x > 0, \quad C_0(x,t) = A_0 + B_0 C(x,t,\alpha_0,D_0)$ (183)
for$\displaystyle   x < 0, \quad C_1(x,t) = A_1 + B_1 C(-x,t,\alpha_1,D_1)$ (184)

where $ A_0, A_1, B_0, B_1, \alpha_0, \alpha_1$ are constants to be determined and
$\displaystyle C(x,t,\alpha,D)=$erfc$\displaystyle \Bigl (\frac{x}{2 \sqrt{D t}}\Bigr) -
\exp\Bigl(\frac{h x \alpha + h^2 t \alpha^{2}}{D}\Bigr)$   erfc$\displaystyle \Bigl (\frac{x}{2 \sqrt{D
t}} + \frac{h\sqrt{D t} \alpha}{D}\Bigr )$     (185)

is a solution of the diffusion equation ( % latex2html id marker 13540
$ \ref{eq:intrinsic-diffusion:1}$) for the case of the surface evaporation condition already studied in [38].
We determine constants $ A_0, A_1, B_0, B_1, \alpha_0, \alpha_1$ from the initial and interface conditions (3.117), (3.118), (3.119) as follows. From the initial conditions we have
$\displaystyle A_0 = C_{init}$   and$\displaystyle \quad A_1 = 0.$     (186)

The interface condition (3.119) yields

$\displaystyle \frac{D_0}{D_1}\frac{\frac{\partial C_0}{\partial x}}{\frac{\part...
...{D_0}\Bigr )}{\text{erfc} \Bigl (\frac{h\sqrt{D_1 t} \alpha_1}{D_1}\Bigr )}=-1.$ (187)

This equation is fullfiled if
$\displaystyle \frac{\alpha_0}{\sqrt{D_0}}=\frac{\alpha_1}{\sqrt{D_1}}$   and$\displaystyle \quad B_0\alpha_0 = -B_1\alpha_1.$     (188)

From (3.118) and (3.123) follows,

$\displaystyle \frac{h}{D_0}\frac{\Bigl(C_{1} - \frac{C_{0}} {m}\Bigr)}{\frac{\p...
...}{D_1}) \text{erfc} \Bigl (\frac{h\sqrt{D_1 t} \alpha_1}{D_1}\Bigr)\Bigr )- \ $    

$\displaystyle -\frac{B_0}{m}\Bigl(1-\exp(\frac{h^2 t \alpha_0^{2}}{D_0})$   erfc$\displaystyle \Bigl(\frac{h\sqrt{D_0 t} \alpha_0}{D_0}\Bigr )\Bigr)-\frac{C_{init}}{m}\Bigr)=1.$ (189)

The last equality is ensured for the condition,
$\displaystyle B_1-\frac{B_0}{m} = \frac{C_{init}}{m}$   and$\displaystyle \quad
-B_1+\frac{B_0}{m} = B_0\alpha_0.$     (190)

By solving the equation system given by (3.125) and (3.127) we have,

$\displaystyle B_0 = -\frac{C_{init}}{1+m\sqrt{\frac{D_0}{D_1}}},\quad B_1 = \fr...
...+ \sqrt{\frac{D_1}{D_0}}},\quad\alpha_0 = \frac{1}{m} + \sqrt{\frac{D_0}{D_1}},$    

$\displaystyle \alpha_1 = 1 + \frac{1}{m}\sqrt{\frac{D_1}{D_0}}.$ (191)

So we can write a solution for the problem posed by (3.30), (3.117), (3.118) and (3.119). For $ x>0$,
$\displaystyle C_0(x,t) = C_{init} \Bigl ( 1- \Bigl (
\frac{1}{1+m\sqrt{\frac{D_0}{D_1}}}\Bigr)\Bigl ($erfc$\displaystyle \Bigl
(\frac{x}{2 \sqrt{D_0 t}}\Bigr) -$      
$\displaystyle -
\exp\Bigl(\frac{h x \alpha_0 + h^2 t \alpha_{0}^{2}}{D_0}\Bigr)$   erfc$\displaystyle \Bigl (\frac{x}{2 \sqrt{D_0
t}} + \frac{h\sqrt{D_0 t} \alpha_1}{D_0}\Bigr ) \Bigr )
\Bigr),$     (192)

and for $ x<0$,
$\displaystyle C_1(x,t) = \frac{C_{init}}{ m + \sqrt{\frac{D_1}{D_0}}}\Bigl ($   erfc$\displaystyle \Bigl (-\frac{x}{2 \sqrt{D_1 t}} \Bigr)
-$      
$\displaystyle -\exp\Bigl(\frac{-h x \alpha_1 + h^2 t \alpha_{1}^{2}}{D_1}
\Bigr )$erfc$\displaystyle \Bigl (-\frac{x}{2 \sqrt{D_1
t}} + \frac{h\sqrt{D_1 t} \alpha_1}{D_1}\Bigr ) \Bigr ).$     (193)


next up previous contents
Next: 5 Numerical Handling of Up: 8 Numerical Handling of Previous: 3 Discretization of the

J. Cervenka: Three-Dimensional Mesh Generation for Device and Process Simulation