2.4.2.2 The Energy-Transport Model

Taking the first four moments of (2.2) into account yields the hydrodynamic model which, however, incorporates convective terms difficult to handle in a numerical simulator. If they are neglected, the following equation system can be derived (the expressions for holes are analogous and have been omitted)

$\displaystyle {\mathbf{J}}_n$ $\displaystyle = \mu_n {\mathrm{k_B}}\left(\ensuremath{{\mathbf{\nabla}}}\left(n...
...ght) + \frac{\ensuremath {\mathrm{q}}}{{\mathrm{k_B}}} {\mathbf{E}} n\right)\ ,$ (2.8)
$\displaystyle {\mathbf{S}}_n$ $\displaystyle = - \frac{\tau_S}{\tau_m} \left( \frac{5{\mathrm{k_B}}^2}{2\ensur...
...rac{5{\mathrm{k_B}}^2}{2\ensuremath {\mathrm{q}}} T_n {\mathbf{J}}_n \right)\ ,$ (2.9)
$\displaystyle \ensuremath{{\mathbf{\nabla}}}\cdot {\mathbf{J}}_n$ $\displaystyle = \ensuremath {\mathrm{q}}\left( R + \partial_t n\right)\ ,$ (2.10)
$\displaystyle \ensuremath{{\mathbf{\nabla}}}\cdot {\mathbf{S}}_n$ $\displaystyle = -\frac{3}{2} {\mathrm{k_B}}\partial_t(nT_n) + {\mathbf{E}}\cdot...
...{k_B}}n \frac{{\mathrm{T}}_n - T_L}{\tau_{\mathcal{E}}} + G_{{\mathcal{E}}n}\ .$ (2.11)

This equation system is commonly known as energy-transport model. Here, $ {\mathbf{S}}$ denotes the energy flux density, $ T_{n}$ the electron temperature, $ \tau_{\mathcal{E}}$, $ \tau_S$, and $ \tau_m$ the energy, energy flux, and momentum relaxation time, and $ G_{{\mathcal{E}}n}$ the net energy generation rate.

A. Gehring: Simulation of Tunneling in Semiconductor Devices