« PreviousUpNext »Contents
Previous: 5.4 Implementation for Full-Band Structures    Top: 5 Electron-Electron Scattering    Next: 5.6 Results and Discussion 2

Investigating Hot-Carrier Effects using the Backward Monte Carlo Method

5.5 Implementation for Parabolic and Isotropic Bands

The next model we want to discuss assumes a parabolic dispersion for both the sample and the partner electron, which is the standard model often used in literature. Some integrals can be solved analytically if a parabolic and isotropic dispersion relation is assumed for the sample electrons:

(5.78) \{begin}{align} \Epsilon (\kv _1) = \frac {\hbar ^2 \kv _1^2}{2m}\,.   \{end}{align}

5.5.1 The Total Scattering Rate for Boltzmann Statistics

The total scattering rate is defined as

(5.79) \{begin}{align} \Gamma _1(\kv _1) = \int S(\kv _1,\kv _1+\qv )\dint ^3\,q\,.         \label {eq:scatt-rate-general} \{end}{align}

We use formulation (5.54) and introduce spherical polar coordinates with \( \kv _1 \) defining the polar axis.

(5.80) \{begin}{align} \Gamma _1(\kv _1) = \frac {C}{2\pi }\int \limits _0^\infty \int \limits _0^\pi \frac {\beta _s^2}{q \left (q^2 + \beta _s^2\right )^2}\,\exp \left [-\left (
\frac {q + k_1\cos \vartheta _1}{\tau } \right )^2\right ]\,2\pi \,\sin \vartheta _1\,\dint \vartheta _1\,q^2\dint q \{end}{align}

Here, we make use of the relation

(5.81–5.80) \{begin}{align*}   \kappa (\kv _1,\qv ) = q - k_1\cos \vartheta _1\,.   \{end}{align*}

Defining \( \chi = \cos \vartheta _1 \) and the scaled variables

(5.81) \{begin}{align} p=\frac {k_1}{\tau }\„\qquad s=\frac {q}{\tau }\„\qquad \gamma =\frac {\beta _s}{\tau } \{end}{align}

we obtain

(5.82) \{begin}{align} \Gamma _1(\kv _1)= C \int \limits _0^\infty \int \limits _{-1}^1 \frac {\gamma ^2\,s}{(s^2+\gamma ^2)^2}\e ^{-(s+p\chi )^2}\dint \chi \dint s\,.   \{end}{align}

The double integral defines a function \( F(p,\gamma ) \):

(5.83) \{begin}{align} F(p,\gamma )=\int \limits _0^\infty \int \limits _{-1}^1 \frac {\gamma ^2\,s}{(s^2+\gamma ^2)^2}\e ^{-(s+p\chi )^2}\dint \chi \dint s\,.   \{end}{align}

Evaluating the \( \chi \)-integral will result in an error function. However, by applying integration by parts in \( s \) the error function can be avoided. We use

(5.84) \{begin}{align} \int \limits _0^\infty \frac {\partial u}{\partial s} v \dint s = u\,v \bigg \rvert ^\infty _{s=0} - \int \limits _0^\infty u \frac {\partial v}{\partial
s}\dint s \label {eq:int-by-parts} \{end}{align}

where \( \frac {\partial u}{\partial s} \) and \( v \) are defined as:

(5.85–5.84) \{begin}{align*}   \frac {\partial u(s,\gamma )}{\partial s} &= \frac {\gamma ^2\,s}{(s^2+\gamma ^2)^2}\\ v(p,s,\chi ) &= \e ^{-(s+p\chi )^2} \{end}{align*}

For the antiderivative \( u \) and the partial derivative of \( v \) we find:

(5.85–5.84) \{begin}{align*} u(s,\gamma ) &= \int \limits _0^s \frac {\gamma ^2\,\mean {s}}{(\mean {s}^2+\gamma ^2)^2}\dint \mean {s} = \frac {s^2}{2(s^2+\gamma ^2)}\\ \frac
{\partial v}{\partial s} &= -2(s + p\chi )\,\e ^{-(s+p\chi )^2}=\frac {1}{p}\,\frac {\partial v}{\partial \chi } \{end}{align*}

Inserting these expression in (5.84) gives

(5.85–5.84) \{begin}{align*}   \int \limits _0^\infty \frac {\partial u}{\partial s}\,v\dint s = -\frac {1}{p} \int \limits _0^\infty u \frac {\partial v}{\partial \chi }\dint s
\{end}{align*}

Now integration over \( \chi \) can be carried out.

(5.85–5.84) \{begin}{align*} F(p,\gamma ) = - \frac {1}{p} \int \limits _0^\infty \dint s \int \limits _{-1}^1 u\frac {\partial v}{\partial \chi }\dint \chi = \frac {1}{p} \int
\limits _0^\infty u(s,\gamma )[v(p,s,-1) - v(p,s,1)] \dint s \{end}{align*}

Back substitution of the functions \( u \) and \( v \) gives

(5.85) \{begin}{align} F(p,\gamma ) = \frac {1}{2p}\int \limits _0^\infty \frac {s^2}{s^2+\gamma ^2}\,\left ( \e ^{-(s-p)^2} - \e ^{-(s+p)^2} \right ) \dint s \label {eq:sp-F}
\{end}{align}

The asymptotic behavior of \( F(p,\gamma ) \) is discussed in Appendix A.5.2

(5.86–5.85) \{begin}{align*}   F(0,0) = 1\,.   \{end}{align*}

With back substitution of \( p \) and \( \tau \), the single-particle scattering can be reformulated to

(5.86) \{begin}{align} \Gamma _1(\Epsilon ) = C\, F\left ( \sqrt {\Epsilon /k_BT}, \beta _s/\tau \right )\,.       \label {eq:Gamma1-integrated} \{end}{align}

The pre-factor C (5.56) with (5.49) reads

(5.87) \{begin}{align} C = \frac {n e^4 }{(2\pi )^{3/2}\hbar ^2\epsilon _s^2\beta _s^2}\, \sqrt {\frac {m}{k_B T}} \{end}{align}

Inserting the definition of \( \beta _s^2 \) (5.2), the pre-factor \( C \) becomes independent of the electron density \( n \).

(5.88) \{begin}{align} C=\frac {n e^4 }{(2\pi )^{3/2}\hbar ^2\epsilon _s^2}\,\frac {\epsilon _s\,k_B T}{e^2\,n}\, \sqrt {\frac {m}{k_B T}}=\frac {e^2 \sqrt {m k_BT}}{(2\pi
)^{3/2}\hbar ^2\epsilon _s} \{end}{align}

The electron-electron scattering rate only depends on the electron density through the screening parameter \( \gamma =\beta _s/\tau \) in the function \( F \). Since \( \gamma \) shows up in the denominator of the integral in \( F \), the electron-electron scattering decreases at higher electron concentrations.

5.5.2 Two-particle Scattering Rate for Boltzmann Statistics

In the previous section the total scattering rate was calculated by integrating the scattering rate \( S(\kv _1,\kv _1’) \). The latter is the result of another integration. Thus the total scattering rate is obtained by two consecutive integrations. Inserting (5.26) in (5.79) and assuming Boltzmann statistics gives

(5.89) \{begin}{align} \Gamma _1(\kv _1) = A \int \frac {\delta \bigl [\Epsilon (\kv _1 + \qv ) + \Epsilon (\kv _2 - \qv ) - \Epsilon (\kv _1) -\Epsilon (\kv _2)\bigr ]} {\left (q^2
+ \beta _s^2\right )^2} p_0(\kv _2) \dint ^3k_2 \dint ^3q \label {eq:1p-scat-rate} \{end}{align}

In this section we reverse the order of integration and perform the \( \qv \)-integration first. The result of the first integration is the two-particle scattering rate \( \Gamma _2(\kv _1,\kv _2) \).

(5.90) \{begin}{align} \Gamma _2(\kv _1,\kv _2) = A \int \frac {\delta \bigl [\Epsilon (\kv _1 + \qv ) + \Epsilon (\kv _2 - \qv ) - \Epsilon (\kv _1) -\Epsilon (\kv _2)\bigr ]}
{\left (q^2 + \beta _s^2\right )^2} p_0(\kv _2) \dint ^3q \label {eq:2p-scat-rate} \{end}{align}

For a parabolic band the argument of the \( \delta \)-function in (5.90) becomes

(5.91) \{begin}{multline} \Epsilon (\kv _1 + \qv ) - \Epsilon (\kv _1) + \Epsilon (\kv _2 - \qv ) -\Epsilon (\kv _2) = \frac {\hbar ^2}{2 m} \left ((\kv _1 + \qv )^2 + (\kv _2 - \qv
)^2 - \kv _1^2 -\kv _2^2\right ) \\ = \frac {\hbar ^2}{m} \left (q^2 + (\kv _1 - \kv _2)\cdot \qv \right ) = \frac {\hbar ^2}{m} \left (q^2 - K q \cos \vartheta \right )\,. \label
{eq:energy-argument-parabolic} \{end}{multline}

Here we have introduced the difference vector \( \Kv \) defined as

(5.92) \{begin}{align} \Kv = \kv _2 - \kv _1\„ \label {eq:K-parabolic} \{end}{align}

and \( \vartheta \), the angle between \( \Kv \) and \( \qv \). In a spherical polar coordinate system, with \( \Kv \) as the polar axis and \( \vartheta \) as the polar angle, the energy conservation requires a positive \( \cos \vartheta \)

(5.93) \{begin}{align} q^2 - q K \cos \vartheta = 0 \quad \Rightarrow \quad \cos \vartheta = \frac {q}{K} \ge 0\,.   \label {eq:ees-polar-angle} \{end}{align}

Since \( q = \abs {\qv } \) and \( K = \abs {\Kv } \) are positive by definition the allowed range of \( \vartheta \) is

(5.94–5.93) \{begin}{align*}   \vartheta \in \left [0,\frac {\pi }{2}\right ]\,.   \{end}{align*}

With (5.91) the integral (5.90) becomes

(5.94–5.93) \{begin}{align*} \Gamma _2(\kv _1,\kv _2)= A\int \limits _0^\infty \int \limits _0^{\pi /2} \frac {\delta [\frac {\hbar ^2}{m}(q^2-K\,q\,\cos \vartheta )]}{(q^2 +\beta
_s^2)^2}\,2\pi \, \sin \vartheta \dint \vartheta \,q^2\dint q \{end}{align*}

We carry out the \( \vartheta \)-integration first. Defining \( \xi = \cos \vartheta \) we obtain

(5.94) \{begin}{multline} H(q)=\int \limits _0^1 \delta \left ( \frac {\hbar ^2}{m}q(q-K\xi ) \right )\dint \xi \\ = \frac {m}{\hbar ^2\,q}\int \limits _0^1 \delta (K\xi - q)\dint
\xi = \frac {m}{\hbar ^2\,K\,q}\left [ \Theta (K-q) - \underbrace {\Theta (-q)}_0 \right ] \{end}{multline}

Note that \( H(q) \) restricts the domain of integration to \( q \in [0,K] \).

(5.95) \{begin}{align} \Gamma _2(\kv _1,\kv _2) = 2\pi \,A \int \limits _0^\infty \frac {q^2}{(q^2-\beta _s^2)^2} H(q)\dint q = 2\pi \,A\,\frac {m}{\hbar ^2\,K} \int \limits _0^K
\frac {q^2}{(q^2-\beta _s^2)^2} \dint q \label {eq:lambda-q-integral} \{end}{align}

With the pre-factor \( B \) (5.49), the scattering rate can be evaluated as [100]:

(5.96) \{begin}{align} \Gamma _2(\kv _1,\kv _2) = \frac {B}{2} \frac {K}{K^2 + \beta _s^2} \,.   \{end}{align}

5.5.3 Single-particle Scattering Rate for Boltzmann Statistics

Having evaluated the \( \qv \)-integral in (5.89), we now evaluate the \( \kv _2 \)-integral. The single-particle scattering rate \( \Gamma _1 \) can be calculated by integrating the two-particle scattering rate \( \Gamma _2 \) against the normalized probability density \( p_0(\kv _2) \), see [100].

(5.97) \{begin}{align} \Gamma _1(\kv _1) =\int \Gamma _2(\kv _1,\kv _2)\,p_0(\kv _2) \;d^3k_2 = \frac {B}{2} \int \frac {\abs {\kv _2-\kv _1}}{\abs {\kv _2-\kv _1}^2 + \beta _s^2}
\frac {f_0(\kv _2)}{C_\mathrm {MB}}\;d^3k_2 \{end}{align}

The variable substitution

(5.98–5.97) \{begin}{align*}            \Kv =\kv _2-\kv _1, \qquad d^3k_2=d^3K,\qquad \kv _2=\kv _1+\Kv \{end}{align*}

leads to the following expression for the single-particle scattering rate

(5.98) \{begin}{align} \Gamma _1(\kv _1) = \frac {B}{2\, C_{MB}} \int \frac {K}{K^2 + \beta _s^2} \,f_0(\kv _1+\Kv )\;d^3K\,.   \label {eq:sp-scatt-1} \{end}{align}

Introducing scaled variables

(5.99–5.98) \{begin}{align*}       p=\frac {k_1}{\tau }, \qquad s=\frac {K}{\tau },\qquad \gamma =\frac {\beta _s}{\tau }\„ \{end}{align*}

the Boltzmann term can be reformulated as

(5.99) \{begin}{align} f_0(\kv _1+\Kv )=\e ^{\eta -(k_1^2+2k_1 K \cos \vartheta +K^2)/\tau ^2} = \e ^{\eta -p^2-s^2-2\,p\,s\,\cos \vartheta } \{end}{align}

the \( \Kv \)-integral in (5.98) can be evaluated analytically:

(5.100) \{begin}{align} \int \frac {K}{K^2 + \beta _s^2} \,f_0(\kv _1+\Kv )\;d^3K &= \tau ^2 \,\e ^\eta \int \frac {s}{s^2+\gamma ^2}\e ^{-p^2-s^2-2\,p\,s\,\cos \vartheta }
\,d^3s\nonumber \\ &=2\pi \tau ^2\,\e ^{\eta }\int \limits _0^\infty \frac {s}{s^2+\gamma ^2}\e ^{-s^2-p^2}s^2\,ds\int \limits _{-1}^{1}\e ^{-2ps\chi }\,d\chi \nonumber \\ &= 2\pi \tau
\,\e ^{\eta } \int \limits _0^\infty \frac {s^2}{s^2+\gamma ^2} \frac {\e ^{-(s-p)^2}-\e ^{-(s+p)^2}}{2p}\,ds \nonumber \\ &= 2\pi \,\tau ^2\,\e ^\eta \,F(p,\gamma ) \{end}{align}

The function \( F(p,\gamma ) \) is defined in (5.85), which leads finally to the single-particle scattering rate (5.86).

5.5.4 Random Selection of the Momentum Transfer q

In the first step the wave vector \( \kv _2 \) of the partner electron is selected randomly from an equilibrium Maxwellian distribution. With the current wave vector \( \kv _1 \) of the sample electron the difference vetor is computed

(5.101–5.100) \{begin}{align*}        \Kv = \kv _2 - \kv _1\„\qquad K=\abs {\Kv }\,.   \{end}{align*}

The two-particle scattering rate can be used to calculate the momentum transfer \( \qv \). For this purpose the integrand in (5.95) can be used as a probability density for \( q \). We define \( F(q) \) as:

(5.101) \{begin}{align} F(q) = \int \limits _0^q \frac {\mean {q} \dint \mean {q}}{\left ( \mean {q}^2 + \beta _s^2\right )^2} = \frac {q^2}{2\beta _s^2\left (q^2 + \beta _s^2\right
)} \{end}{align}

The normalized cumulative probability distribution is

(5.102) \{begin}{align} P(q) = \frac {F(q)}{F(K)}, \qquad q\in [0, K]\,.   \{end}{align}

The random number \( q \) is generated using the inversion method, see Section 3.3.2.

(5.103–5.102) \{begin}{align*}   P(q_r) = r_1\quad \Rightarrow \quad q_r^2 = \frac {r_1 K^2 \beta _s^2}{K^2(1 - r_1) + \beta _s^2} \{end}{align*}

The polar angle \( \vartheta _r \) is given by (5.93):

(5.103) \{begin}{align} \cos \vartheta _r = \frac {q_r}{K}\,.   \{end}{align}

With a second random number \( r_2 \) the azimuthal angle \( \varphi \) is generated from a uniform distribution in \( [0,2\pi ] \).

(5.104) \{begin}{align} \varphi _r = 2\pi r_2 \{end}{align}

From \( (q_r, \cos \vartheta _r, \varphi _r) \) the 3D vector \( \qv _r \) can be constructed. Note that the polar axis is given by the difference vector \( \Kv = \kv _2 - \kv _1 \). In the last step the final state is computed.

(5.105) \{begin}{align} \kv _1’ &= \kv _1 + \qv _r \{end}{align}

« PreviousUpNext »Contents
Previous: 5.4 Implementation for Full-Band Structures    Top: 5 Electron-Electron Scattering    Next: 5.6 Results and Discussion 2