next up previous contents
Next: 6.1.3 Simulated Fields Visualization Up: 6.1 Inductance and Resistance Previous: 6.1.1 Analytical Inductance and   Contents

6.1.2 Numerical Inductance and Resistance Extraction

The electro-magnetic power in the domain $ \mathcal{V}$ can be expressed in two different ways. The first one is by volume integration over the power density distribution [103] in the region $ \mathcal{V}$ . The second one is by the current flowing trough the resulting resistance and inductance. As aforementioned, the quasi-magnetostatic case is considered

$\displaystyle \int_{\mathcal{V}}\left(\vec{J}\cdot\vec{E} + \vec{H}\cdot\partial_t\vec{B}\right)\mathrm{d}V = LI\frac{dI}{dt} + RI^2.$ (6.13)

In the frequency domain using the constitutive relations (4.7) and (4.8) one obtains

$\displaystyle \int_{\mathcal{V}}\left(\frac{J^2}{\gamma} + \jmath\omega\mu{}H^2\right)\mathrm{d}V = \jmath\omega{}LI^2 + RI^2.$ (6.14)

The left hand side of (6.14) can be denoted in the following way:

$\displaystyle P_1 = \int_{\mathcal{V}}\frac{J^2}{\gamma} \mathrm{d}V,   P_2 ...
...mega\int_{\mathcal{V}}\mu{}H^2 \mathrm{d}V,   \mathrm{and}  P = P_1 + P_2.$ (6.15)

Consequently the resistance $ R$ and the inductance $ L$ arising in the domain $ \mathcal{V}$ are calculated by

$\displaystyle R = \frac{\mathrm{\mathcal{R}e\{P\}}}{I^2},   L = \frac{\mathrm{\mathcal{I}m\{P\}}}{\omega{}I^2}.$ (6.16)

The domain $ \mathcal{V}$ is discretized and the linear equation system (5.37) is assembled as described in Section 5.2 and solved to obtain the solution vector $ \{c\}$ . The indexes $ j$ of the coefficients $ c_j$ are arranged as shown in Section 5.2. The fields $ \vec{H}_1$ and $ \psi$ are constructed as in (5.27) and (5.28). $ \vec{H}$ is obtained by (5.23). These quantities are used to determine $ P$ . Inserting (5.13) in the expression for $ P_1$ from (6.15) gives

\begin{displaymath}\begin{split}P_1 & = \int_{\mathcal{V}}\frac{1}{\gamma}\left(...
...\nabla}\times\vec{N}_j\right) \right]^2 \mathrm{d}V \end{split}\end{displaymath} (6.17)

or

\begin{displaymath}\begin{split}P_1 & = \sum_{i=1}^m c_i \sum_{j=1}^m \int_{\m...
...vec{\nabla}\times\vec{N}_j\right) \mathrm{d}V c_j. \end{split}\end{displaymath} (6.18)

With (5.23) $ P_2$ is modified to read

$\displaystyle P_2 = \jmath\omega\int_{\mathcal{V}}\mu\left(\vec{H}_1 - \vec{\nabla}\psi\right)^2 \mathrm{d}V.$ (6.19)

Expressing $ \vec{H}_1$ from (5.27) and $ \psi$ from (5.28) one obtains

$\displaystyle P_2 = \jmath\omega\int_{\mathcal{V}}\mu \left( \sum_{j=1}^{m}c_j\...
...la}\lambda_j - \sum_{j=M+1}^{N}c_j\vec{\nabla}\lambda_j \right)^2 \mathrm{d}V,$ (6.20)

which is written in the more convenient form

\begin{displaymath}\begin{split}\frac{P_2}{\jmath\omega} & = \left.\sum_ic_i\sum...
... [m+1;n]\cup[M+1;N], j \in [m+1;n]\cup[M+1;N]}. \end{split}\end{displaymath} (6.21)

Using (6.18) and (6.21) for $ P_1$ and $ P_2$ the very suitable form for the power $ P$ in the simulation domain is derived

$\displaystyle P = P_1 + P_2 = \left\{c\right\}^T \left[\begin{array}{llll} A_1 ...
...2 & A_3 & B_3  B_2^T & C_2 & B_3^T & C_3 \end{array}\right] \left\{c\right\},$ (6.22)

where the sub-matrices $ A_k$ , $ B_k$ and $ C_k$ with $ k\in[1;3]$ are calculated using the mathematical expressions given in (5.38), (5.39), and (5.40), respectively. The indexes $ k$ of $ A_k$ , $ B_k$ and $ C_k$ indicate the different ranges of the sub-matrix entries global indexes $ i$ and $ j$ . The associated global index ranges are specified in (6.18) and (6.21) and can be given more clearly as follows:

$\displaystyle \renewedcommand{arraystretch}{1.3} \begin{array}{l\vert l\vert l\...
...      C_2 &        B_3^T &        C_3  \hline \end{array}$    

In (5.37) only the $ n\times{}n$ part of the matrix for the unknowns is used. The remaining part is assembled with the known Dirichlet values directly to right hand side vector $ \{b\}$ . For the power calculation (6.22) the whole $ N\times{}N$ matrix is used. Expression (6.22) can be simplified by involving (5.37)

$\displaystyle P = \left\{c_{n+1} ... c_N\right\} \begin{array}{\vert llll\ver...
..._2 & B_2 & A_3 & B_3  B_2^T & C_2 & B_3^T & C_3 \end{array} \left\{c\right\}.$ (6.23)

Figure 6.4: Current density distribution at low frequency.
\includegraphics[width=7cm]{figures/applications/coax/coax_i_f3e7_scaled.eps}
Figure 6.5: Current density distribution at $ 3$ GHz.
\includegraphics[width=7cm]{figures/applications/coax/coax_i_f3e10_scaled.eps}


Figure 6.6: Current density distribution at $ 30$ GHz.
\includegraphics[width=7cm]{figures/applications/coax/coax_i_f3e11_scaled.eps}
Figure 6.7: Current density distribution at $ 300$ GHz.
\includegraphics[width=7cm]{figures/applications/coax/coax_i_f3e12_scaled.eps}

Figure 6.8: Magnetic field distribution at low frequency.
\includegraphics[width=7cm]{figures/applications/coax/coax_h_f3e7_scaled.eps}
Figure 6.9: Magnetic field distribution at $ 3$ GHz.
\includegraphics[width=7cm]{figures/applications/coax/coax_h_f3e10_scaled.eps}


Figure 6.10: Magnetic field distribution at $ 30$ GHz.
\includegraphics[width=7cm]{figures/applications/coax/coax_h_f3e11_scaled.eps}
Figure 6.11: Magnetic field distribution at $ 300$ GHz.
\includegraphics[width=7cm]{figures/applications/coax/coax_h_f3e12_scaled.eps}


next up previous contents
Next: 6.1.3 Simulated Fields Visualization Up: 6.1 Inductance and Resistance Previous: 6.1.1 Analytical Inductance and   Contents

A. Nentchev: Numerical Analysis and Simulation in Microelectronics by Vector Finite Elements