next up previous contents
Next: 3.4.2 Ionized Impurity Scattering Up: 3.4 Carrier Mobility Previous: 3.4 Carrier Mobility


3.4.1 Lattice Mobility

At finite temperature the lattice atoms oscillate about their equilibrium sites. The carriers are scattered and this results in a temperature dependent mobility $\mu^{\mathrm{L}}$. The superscript L stands for lattice scattering. The temperature dependence of the lattice mobility is modeled by a power law for all semiconductors.
\begin{displaymath}
\mu^{\mathrm{L}}_{\nu} = \mu^{\mathrm{L}}_{\nu,300}\cdot\lef...
...mathrm{300 K}}\right)^{\gamma_{0,\nu}},
\hspace{1cm}\nu = n,p
\end{displaymath} (3.96)

The parameter values used in this model for electrons and holes, respectively, are summarized in Table 3.21.

Table 3.21: Parameter values for the lattice mobility
Material $\nu$ $\mu^{\mathrm{L}}_{\nu,300}$ [cm$^2$/Vs] $\gamma_{0,\nu}$ Range References
Si n 1430 -2 1500 [86,90,85]
  p 460 -2.18 450-500 [86,90,85]
Ge n 3800 -1.66 3900 [86,90,85,161]
  p 1800 -2.33 1900 [86,90,85,161]
GaAs n 8500 -2.2 8500-9400 [86,117,85,162]
  p 800 -0.9 400-492 [86,117,85,162]
AlAs n 410 -2.1 400-1200 [162,117,85]
  p 130 -2.2 130-420 [93,117,85]
InAs n 32500 -1.7 22600-34000 [117,86,92,162]
  p 510 -2.3 200 - 530 [117,86,92,162]
InP n 5300 -1.9 4200-5400 [117,86,91]
  p 200 -1.2 130-180 [117,86,85]
GaP n 210 -1.94 110-300 [86,92,91,85]
  p 160 -2.0 75-150 [86,117]



next up previous contents
Next: 3.4.2 Ionized Impurity Scattering Up: 3.4 Carrier Mobility Previous: 3.4 Carrier Mobility
Vassil Palankovski
2001-02-28