[1]   E. Chason, “A Kinetic Analysis of Residual Stress Evolution in Polycrystalline Thin Films,” Thin Solid Films, vol. 526, pp. 1–14, 2012.

[2]   E. Chason, J. W. Shin, S. J. Hearne, and L. B. Freund, “Kinetic Model for Dependence of Thin Film Stress on Growth Rate, Temperature, and Microstructure,” Journal of Applied Physics, vol. 111, no. 8, p. 083520, 2012.

[3]   E. Chason, A. Engwall, F. Pei, M. Lafouresse, U. Bertocci, G. Stafford, J. A. Murphy, C. Lenihan, and D. N. Buckley, “Understanding Residual Stress in Electrodeposited Cu Thin Films,” Journal of The Electrochemical Society, vol. 160, no. 12, pp. D3285–D3289, 2013.

[4]   C. Lécuyer, D. C. Brock, and J. Last, Makers of the Microchip: A Documentary History of Fairchild Semiconductor. MIT Press, 2010.

[5]   J. S. Kilby, “Invention of the Integrated Circuit,” IEEE Transactions on Electron Devices, vol. 23, no. 7, pp. 648–654, 1976.

[6]   R. R. Schaller, “Moore’s Law: Past, Present and Future,” IEEE Spectrum, vol. 34, no. 6, pp. 52–59, 1997.

[7]   A. N. Saxena, Invention Of Integrated Circuits: Untold Important Facts. River Edge, NJ, USA: World Scientific Publishing Co., Inc., 2009.

[8]   E. M. Moore, “Cramming More Components Onto Integrated Circuits,” Electronics, pp. 114–117, 1965.

[9]   G. E. Moore, “Progress in Digital Integrated Electronics,” in Electron Devices Meeting, vol. 21, pp. 11–13, 1975.

[10]   M. Dalmau, Les Microprocesseurs.

[11]   J. D. Meindl, “Ultra-Large Scale Integration,” IEEE Transactions on Electron Devices, vol. 31, no. 11, pp. 1555–1561, 1984.

[12]   G. Bose, “IC Fabrication Technology,” 2014.

[13]   K. Reinhardt and W. Kern, Handbook of Silicon Wafer Cleaning Technology. Elsevier Science, 2008.

[14]   P. Garrou, C. Bower, and P. Ramm, Handbook of 3D Integration. No. v. 1, Wiley-VCH-Verlag, 2008.

[15]   R. H. Bruce, W. P. Meuli, and J. Ho, “Multi Chip Modules,” in Proc. Conference on Design Automation, pp. 389–393, 1989.

[16]   R. S. Patti, “Three-Dimensional Integrated Circuits and the Future of System-on-Chip Designs,” Proceedings of the IEEE, vol. 94, no. 6, pp. 1214–1224, 2006.

[17]   K. L. Tai, “System-in-Package (SIP): Challenges and Opportunities,” in Proc. of the 2000 Asia and South Pacific Design Automation Conference, pp. 191–196, 2000.

[18]   A. Papanikolaou, D. Soudris, and R. Radojcic, Three Dimensional System Integration: IC Stacking Process and Design. Springer US, 2010.

[19]   S. W. Yoon, D. W. Yang, J. H. Koo, M. Padmanathan, and F. Carson, “3d TSV Processes and its Assembly/Packaging Technology,” in Proc. IEEE 3D System Integration (3DIC), pp. 1–5, 2009.

[20]   P. Ramm, J. J. Q. Lu, and M. M. V. Taklo, Handbook of Wafer Bonding. Handbook of Wafer Bonding, Wiley, 2012.

[21]   W. Arden, M. Brillouët, P. Cogez, M. Graef, B. Huizing, and R. Mahnkopf, “More than-Moore white paper,” Version, vol. 2, p. 14, 2010.

[22]   J. Burghartz, Ultra-Thin Chip Technology and Applications. Springer New York, 2010.

[23]   M. Puech, J. M. Thevenoud, J. M. Gruffat, N. Launay, N. Arnal, and P. Godinat, “Fabrication of 3D Packaging TSV using DRIE,” in Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS, pp. 109–114, 2008.

[24]   F. Laermer and A. Schilp, “Method of Anisotropically Etching Silicon,” 1996.

[25]   K. H. Lu, X. Zhang, S. K. Ryu, J. Im, R. Huang, and P. S. Ho, “Thermo-Mechanical Reliability of 3-D ICs Containing Through Silicon Vias,” in Proc. IEEE Electronic Components and Technology Conference (ECTC), pp. 630–634, 2009.

[26]   I. D. Wolf, K. Croes, O. V. Pedreira, R. Labie, A. Redolfi, M. V. D. Peer, K. Vanstreels, C. Okoro, B. Vandevelde, and E. Beyne, “Cu Pumping in TSVs: Effect of Pre-CMP Thermal Budget,” Microelectronics Reliability, vol. 51, no. 9–11, pp. 1856–1859, 2011.

[27]   M. J. Wolf, B. Dretschkow, T.and Wunderle, N. Jurgensen, G. Engelmann, O. Ehrmann, A. Uhlig, B. Michel, and H. Reichl, “High Aspect Ratio TSV Copper Filling with Different Seed Layers,” in Proc. IEEE Electronic Components and Technology Conference (ECTC), pp. 563–570, 2008.

[28]   D. Malta, E. Vick, S. Goodwin, C. Gregory, M. Lueck, A. Huffman, and D. Temple, “Fabrication of TSV-Based Silicon Interposers,” in Proc. IEEE International 3D Systems Integration Conference (3DIC), pp. 1–6, 2010.

[29]   J. Kraft, F. Schrank, J. Teva, J. Siegert, G. Koppitsch, C. Cassidy, E. Wachmann, F. Altmann, S. Brand, C. Schmidt, and M. Petzold, “3D Sensor Application with Open Through Silicon Via Technology,” in Proc. IEEE Electronic Components and Technology Conference (ECTC), pp. 560–566, 2011.

[30]   K. Kondo, M. Kada, and K. Takahashi, Three-Dimensional Integration of Semiconductors: Processing, Materials, and Applications. Springer International Publishing, 2016.

[31]   Toshiba, Toshiba Develops World’s First 16-die Stacked NAND Flash Memory with TSV Technology, 2015.

[32]   J. Liu, O. Salmela, J. Sarkka, J. Morris, P. E. Tegehall, and C. Andersson, Reliability of Microtechnology: Interconnects, Devices and Systems. Springer New York, 2011.

[33]   Z. Suo, “Reliability of Interconnect Structures,” Interface and Nanoscale Failure, vol. 8, pp. 265–324, 2003.

[34]   Y. M. Desai, Finite Element Method with Applications in Engineering. Dorling Kindersley, 2011.

[35]   J. Betten, Creep Mechanics. Springer Berlin Heidelberg, 2008.

[36]   A. F. Bower, Applied Mechanics of Solids. CRC Press, 2009.

[37]   D. Gross and T. Seelig, Fracture Mechanics: With an Introduction to Micromechanics. Mechanical Engineering Series, Springer Berlin Heidelberg, 2011.

[38]   A. C. Fischer-Cripps, Nanoindentation. Mechanical Engineering Series, Springer, 2004.

[39]   G. Q. Zhang, W. D. van Driel, and X. J. Fan, Mechanics of Microelectronics. Solid Mechanics and Its Applications, Springer Netherlands, 2006.

[40]   J. Schröder and K. Hackl, Plasticity and Beyond: Microstructures, Crystal-Plasticity and Phase Transitions. CISM International Centre for Mechanical Sciences, Springer Vienna, 2013.

[41]   D. Hull and D. J. Bacon, Introduction to Dislocations. Elsevier Science, 2001.

[42]   L. B. Freund and S. Suresh, Thin Film Materials: Stress, Defect Formation and Surface Evolution. Cambridge University Press, 2004.

[43]   D. Rees, Basic Engineering Plasticity: An Introduction with Engineering and Manufacturing Applications. Elsevier Science, 2012.

[44]   A. R. A. Ragab and S. E. A. Bayoumi, Engineering Solid Mechanics: Fundamentals and Applications. Taylor & Francis, 1998.

[45]   J. W. Hutchinson, “Stresses and Failure Modes in Thin Films and Multilayers,” Notes for a Dcamm Course. Technical University of Denmark, Lyngby, pp. 1–45, 1996.

[46]   A. Oechsner and M. Merkel, One-Dimensional Finite Elements: An Introduction to the FE Method. Springer Berlin Heidelberg, 2012.

[47]   J. N. Reddy, An Introduction to the Finite Element Method. McGraw-Hill series in Mechanical Engineering, McGraw-Hill, 2006.

[48]   M. Kaltenbacher, Numerical Simulation of Mechatronic Sensors and Actuators: Finite Elements for Computational Multiphysics. Springer Berlin Heidelberg, 2015.

[49]   O. C. Zienkiewicz, R. L. Taylor, and J. Z. Zhu, The Finite Element Method: Its Basis and Fundamentals. Elsevier Science, 2005.

[50]   G. R. Liu and S. S. Quek, The Finite Element Method: A Practical Course. Elsevier Science, 2013.

[51]   B. Swinnen, W. Ruythooren, P. D. Moor, L. Bogaerts, L. Carbonell, K. D. Munck, B. Eyckens, S. Stoukatch, D. S. Tezcan, Z. Tokei, J. Vaes, J. V. Aelst, and E. Beyne, “3D Integration by Cu-Cu Thermo-Compression Bonding of Extremely Thinned Bulk-Si Die Containing 10 μm Pitch Through-Si Vias,” in Proc. International Electron Devices Meeting, pp. 1–4, 2006.

[52]   S. Hashmi, Comprehensive Materials Processing. Elsevier Science, 2014.

[53]   V. Cherman, G. V. der Plas, J. D. Vos, A. Ivankovic, M. Lofrano, V. Simons, M. Gonzalez, K. Vanstreels, T. Wang, R. Daily, W. Guo, G. Beyer, A. L. Manna, I. D. Wolf, and E. Beyne, “3D Stacking Induced Mechanical Stress Effects,” in Proc. IEEE Electronic Components and Technology Conference (ECTC), pp. 309–315, 2014.

[54]   C. Ko and K. Chen, “Wafer-Level Bonding/Stacking Technology for 3D Integration,” Microelectronics Reliability, vol. 50, no. 4, pp. 481–488, 2010.

[55]   X. Li and B. Bhushan, “A Review of Nanoindentation Continuous Stiffness Measurement Technique and its Applications,” Materials Characterization, vol. 48, no. 1, pp. 11–36, 2002.

[56]   N. K. Mukhopadhyay and P. Paufler, “Micro- and Nanoindentation Techniques for Mechanical Characterisation of Materials,” International Materials Reviews, vol. 51, no. 4, pp. 209–245, 2006.

[57]   H. Hertz, “On the Contact of Elastic Solids,” J. Reine Angew. Math, vol. 92, no. 110, pp. 156–171, 1881.

[58]   D. Tabor, The Hardness of Metals. Monographs on the Physics and Chemistry of Materials, OUP Oxford, 2000.

[59]   A. P. Karmarkar, X. Xiaopeng, and V. Moroz, “Performanace and Reliability Analysis of 3D-Integration Structures Employing Through Silicon Via (TSV),” in Proc. IEEE International Reliability Physics Symposium (IRPS), pp. 682–687, 2009.

[60]   L. Hofmann, S. Dempwolf, D. Reuter, R. Ecke, K. Gottfried, S. Schulz, R. Knechtel, and T. Geßner, “3D Integration Approaches for MEMS and CMOS Sensors Based on a Cu Through-Silicon-Via Technology and Wafer Level Bonding,” in Proc. SPIE Microtechnologies, pp. 951709–951709, 2015.

[61]   O. Tabata, T. Tsuchiya, O. Brand, G. K. Fedder, C. Hierold, and J. G. Korvink, Reliability of MEMS: Testing of Materials and Devices. Advanced Micro & Nanosystems, Wiley, 2013.

[62]   COMSOL, “COMSOL Multiphysics® v. 5.1., COMSOL AB, Stockholm, Sweden,” 2016.

[63]   J. Lubliner, Plasticity Theory. Dover Books on Engineering, Dover Publications, 2013.

[64]   H. D. Espinosa, B. C. Prorok, and M. Fischer, “A Methodology for Determining Mechanical Properties of Freestanding Thin Films and MEMS Materials,” Journal of the Mechanics and Physics of Solids, vol. 51, no. 1, pp. 47–67, 2003.

[65]   H. D. Espinosa, B. C. Prorok, and B. Peng, “Plasticity Size Effects in Free-Standing Submicron Polycrystalline FCC Films Subjected to Pure Tension,” Journal of the Mechanics and Physics of Solids, vol. 52, no. 3, pp. 667–689, 2004.

[66]   H. Pelletier, J. Krier, A. Cornet, and P. Mille, “Limits of Using Bilinear Stress–Strain Curve for Finite Element Modeling of Nanoindentation Response on Bulk Materials,” Thin Solid Films, vol. 379, no. 1–2, pp. 147–155, 2000.

[67]   L. Filipovic, A. P. Singulani, F. Roger, S. Carniello, and S. Selberherr, “Intrinsic Stress Analysis of Tungsten-Lined Open TSVs,” Microelectronics Reliability, vol. 55, no. 9–10, pp. 1843–1848, 2015.

[68]   M. Kuna, Finite Elements in Fracture Mechanics: Theory - Numerics - Applications. Solid Mechanics and Its Applications, Springer Netherlands, 2013.

[69]   A. A. Griffith, “The Phenomena of Rupture and Flow in Solids,” Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, vol. 221, pp. 163–198, 1921.

[70]   C. T. Sun and Z. Jin, Fracture Mechanics. Boston: Academic Press, 2012.

[71]   R. P. Wei, Fracture Mechanics: Integration of Mechanics, Materials Science and Chemistry. Cambridge University Press, 2010.

[72]   E. Zeidler, Springer-Taschenbuch der Mathematik. Springer Spektrum, 2013.

[73]   B. M. Malyshev and R. L. Salganik, “The Strength of Adhesive Joints Using the Theory of Cracks,” International Journal of Fracture, vol. 26, no. 4, pp. 261–275, 1984.

[74]   J. R. Rice, “A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks,” J. Appl. Mech., vol. 35, no. 2, pp. 379–386, 1968.

[75]   B. Budiansky and J. R. Rice, “Conservation Laws and Energy-Release Rates,” J. Appl. Mech., vol. 40, no. 1, pp. 201–203, 1973.

[76]   R. E. Smelser and M. E. Gurtin, “On the J-Integral for Bi-Material Bodies,” Int. J. Fract., vol. 13, no. 3, pp. 382–384, 1977.

[77]   R. H. Myers, D. C. Montgomery, G. G. Vining, and T. J. Robinson, Generalized Linear Models: with Applications in Engineering and the Sciences. Wiley Series in Probability and Statistics, Wiley, 2012.

[78]   R. A. Naik and J. Crews, J. H., “Determination of Stress Intensity Factors for Interface Cracks Under Mixed-Mode Loading,” Paper presented at the ASTM National Symposium on Fracture Mechanics, 1992.

[79]   K. H. Lu, S.-K. Ryu, Q. Zhao, X. Zhang, J. Im, R. Huang, and P. S. Ho, “Thermal Stress Induced Delamination of Through Silicon Vias in 3-D Interconnects,” in Proc. IEEE Electronic Components and Technology Conference (ECTC), pp. 40–45, 2010.

[80]   F. Roger, J. Kraft, K. Molnar, and R. Minixhofer, “TCAD Electrical Parameters Extraction on Through Silicon Via (TSV) Structures in a 0.35 μm Analog Mixed-Signal CMOS,” in Proc. of the 2012 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), pp. 380– 383, 2012.

[81]   L. Filipovic and S. Selberherr, “The Effects of Etching and Deposition on the Performance and Stress Evolution of Open Through Silicon Vias,” Microelectron. Reliab., vol. 54, no. 9, pp. 1953–1958, 2014.

[82]   A. A. Volinsky, N. R. Moody, and W. W. Gerberich, “Interfacial Toughness Measurements for Thin Films on Substrates,” Acta Mater., vol. 50, pp. 441–466, 2002.

[83]   P. J. Wei, W. L. Liang, C. F. Ai, and J. F. Lin, “A New Method for Determining the Strain Energy Release Rate of an Interface Via Force–Depth Data of Nanoindentation Tests,” Nanotechnology, vol. 20, no. 2, p. 025701, 2009.

[84]   M. S. Kennedy, D. F. Bahr, and N. R. Moody, “The Effect of Nonuniform Chemistry on Interfacial Fracture Toughness,” Metall. Mater. Trans. A, vol. 38, no. 13, pp. 2256–2262, 2007.

[85]   M. J. Cordill, D. F. Bahr, N. R. Moody, and W. W. Gerberich, “Recent Developments in Thin Film Adhesion Measurement,” IEEE Transactions on Device and Materials Reliability, vol. 4, no. 2, pp. 163–168, 2004.

[86]   C. Krauss, S. Labat, S. Escoubas, O. Thomas, S. Carniello, J. Teva, and F. Schrank, “Stress Measurements in Tungsten Coated Through Silicon Vias for 3D Integration,” Thin Solid Films, vol. 530, pp. 91–95, 2013.

[87]   P. G. Charalambides, J. Lund, A. G. Evans, and R. M. McMeeking, “A Test Specimen for Determing the Fracture Resistance of Bimaterial Iinterfaces,” Journal of Applied Mechanics, vol. 56, no. 1, pp. 77–82, 1989.

[88]   I. Hofinger, M. Oechsner, H.-A. Bahr, and M. V. Swain, “Modified Four-Point Bending Specimen for Determining the Interface Fracture Energy for Thin, Brittle Layers,” International Journal of Fracture, vol. 92, no. 3, pp. 213–220, 1998.

[89]   R. C. Cammarata, T. M. Trimble, and D. J. Srolovitz, “Surface Stress Model for Intrinsic Stresses in Thin Films,” Journal of Materials Research, vol. 15, pp. 2468–2474, 2000.

[90]   S. C. Seel, Stress and Structure Evolution During Volmer-Weber Growth of Thin Films. PhD thesis, Massachusetts Institute of Technology, 2002.

[91]   E. Chason, B. W. Sheldon, L. B. Freund, J. A. Floro, and S. J. Hearne, “Origin of Compressive Residual Stress in Polycrystalline Thin Films,” Phys. Rev. Lett., vol. 88, p. 156103, 2002.

[92]   R. Koch, “The Intrinsic Stress of Polycrystalline and Epitaxial Thin Metal Films,” Journal of Physics: Condensed Matter, vol. 6, no. 45, p. 9519, 1994.

[93]   I. Committee et al., “International Technology Roadmap for Semiconductors,” 2013.

[94]   N. Ranganathan, D. Y. Lee, L. Youhe, G. Q. Lo, K. Prasad, and K. L. Pey, “Influence of Bosch Etch Process on Electrical Isolation of TSV Structures,” IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 1, no. 10, pp. 1497–1507, 2011.

[95]   L. Filipovic, R. L. de Orio, and S. Selberherr, “Process and Reliability of SF6/O2 Plasma Etched Copper TSVs,” in Proc. IEEE Thermal, mechanical and multi-physics simulation and experiments in microelectronics and microsystems (EUROSIME), pp. 1–4, 2014.

[96]   J. A. Floro, E. Chason, R. C. Cammarata, and D. J. Srolovitz, “Physical Origins of Intrinsic Stresses in Volmer-Weber Thin Films,” MRS Bulletin, vol. 27, pp. 19–25, 2002.

[97]   F. Roger, A. Singulani, S. Carniello, L. Filipovic, and S. Selberherr, “Global Statistical Methodology for the Analysis of Equipment Parameter Effects on TSV Formation,” in Proc. IEEE International Workshop on CMOS Variability (VARI), pp. 39–44, 2015.

[98]   J. A. Floro and E. Chason, “Curvature Based Techniques for Realtime Stress Measurements During Thin Film Growth,” In-Situ Characterization of Thin Film Growth Processes, p. 191, 2001.

[99]   R. C. Cammarata, “Surface and Interface Stress Effects in Thin Films,” Progress in Surface Science, vol. 46, no. 1, pp. 1–38, 1994.

[100]   W. D. Nix and B. M. Clemens, “Crystallite Coalescence: A Mechanism for Intrinsic Tensile Stresses in Thin Films,” Journal of Materials Research, vol. 14, no. 08, pp. 3467–3473, 1999.

[101]   L. B. Freund and E. Chason, “Model for Stress Generated Upon Contact of Neighboring Islands on the Surface of a Substrate,” Journal of Applied Physics, vol. 89, no. 9, pp. 4866–4873, 2001.

[102]   L. Vitos, A. V. Ruban, H. L. Skriver, and J. Kollár, “The Surface Energy of Metals,” Surface Science, vol. 411, no. 1-2, pp. 186–202, 1998.

[103]   F. Spaepen, “Interfaces and Stresses in Thin Films,” Acta Materialia, vol. 48, no. 1, pp. 31–42, 2000.

[104]   C. Friesen, S. C. Seel, and C. V. Thompson, “Reversible Stress Changes at All Stages of Volmer–Weber Film Growth,” Journal of Applied Physics, vol. 95, no. 3, pp. 1011–1020, 2004.

[105]   R. Koch, D. Hu, and A. K. Das, “Compressive Stress in Polycrystalline Volmer-Weber Films,” Phys. Rev. Lett., vol. 94, p. 146101, 2005.

[106]   A. Rajamani, B. W. Sheldon, E. Chason, and A. F. Bower, “Intrinsic Tensile Stress and Grain Boundary Formation During Volmer-Weber Film Growth,” Applied Physics Letters, vol. 81, no. 7, pp. 1204–1206, 2002.

[107]   S. Sivaram, Chemical Vapor Deposition: Thermal and Plasma Deposition of Electronic Materials. Electrical and Electronics Technology Handbooks, Van Nostrand Reinhold, 1995.