[1]   S. Budiansky, Battle of Wits: the Complete Story of Codebreaking in World War II. Simon and Schuster, 2000.

[2]   E. Braun, Revolution in Miniature: the History and Impact of Semiconductor Electronics. Cambridge University Press, 1982.

[3]   F. Kaplan, 1959: The Year Everything Changed. John Wiley & Sons, 2009.

[4]   T. J. Bergin, “50 years of army computing from ENIAC to MSRC,” DTIC Document, Tech. Rep., 2000.

[5]   A. Randall, “Q&A: A lost interview with ENIAC co-inventor J.Presper Eckert,” Computerworld, vol. 5, p. 2009, 2006. [Online]. Available:

[6]   NobelMedia. (2003, May) The history of the integrated circuit. [Online]. Available:

[7]   B. Lojek, History of Semiconductor Engineering. Springer, 2007.

[8]   J. S. Kilby, “Method of making miniaturized electronic circuits,” US Grant US 3 261 081 A, July 19, 1966. [Online]. Available:

[9]   J. Kilby, “Miniaturized electronic circuits,” US Grant US3 138 743 A, June 23, 1964. [Online]. Available:

[10]   K. Lehovec, “Multiple semiconductor assembly,” US Grant US 3 029 366 A, April 10, 1962. [Online]. Available:

[11]   J. A. Hoerni, “Semiconductor device,” US Grant US 3 064 167 A, November 13, 1962. [Online]. Available:

[12]   NobelMedia. (2013, December) The Nobel prize in physics 2000. [Online]. Available:

[13]   G. Moore. (2005, April) Moore’s law. Intel corp. [Online]. Available:

[14]   Intel. Desktop processors - intel product information. Intel corp. [Online]. Available:

[15]   M. Dubash. (2005, April) Moore’s law is dead, says Gordon Moore. Techworld. [Online]. Available:

[16]   W. Nawrocki, “Physical limits for scaling of integrated circuits,” in Journal of Physics: Conference Series, vol. 248, no. 1. IOP, 2010.

[17]   T. Osada and M. Godwin, “International technology roadmap for semiconductors,” ITRS, Tech. Rep., 2010.

[18]   M. Haselman and S. Hauck, “The future of integrated circuits: A survey of nanoelectronics,” Proceedings of the IEEE, vol. 98, no. 1, pp. 11–38, 2010.

[19]   K.-S. Yeo and K. Roy, Low Voltage, Low Power VLSI Subsystems. McGraw-Hill, 2004.

[20]   L. R. Harriott, “Limits of lithography,” Proceedings of the IEEE, vol. 89, no. 3, pp. 366–374, 2001.

[21]   R. F. Pease and S. Y. Chou, “Lithography and other patterning techniques for future electronics,” Proceedings of the IEEE, vol. 96, no. 2, pp. 248–270, 2008.

[22]   G. Brewer, Electron-beam Technology in Microelectronic Fabrication. Elsevier, 2012.

[23]   J. Fischer and M. Wegener, “Three-dimensional optical laser lithography beyond the diffraction limit,” Laser & Photonics Reviews, vol. 7, no. 1, pp. 22–44, 2013.

[24]   K. Banerjee, A. Amerasekera, G. Dixit, and C. Hu, “The effect of interconnect scaling and low-k dielectric on the thermal characteristics of the IC metal,” in International Electron Devices Meeting (IEDM). IEEE, 1996, pp. 65–68.

[25]   J. J.-Q. Lu and K. Rose, “3D integration: Why, what, who, when?” Future Fab Intl., vol. 23, pp. 25–27, 2007.

[26]   S. Wong, A. El-Gamal, P. Griffin, Y. Nishi, F. Pease, and J. Plummer, “Monolithic 3D integrated circuits,” in International Symposium on VLSI Technology, Systems and Applications (VLSI-TSA). IEEE, 2007, pp. 1–4.

[27]   P. Batude, M. Vinet, A. Pouydebasque, C. Le Royer, B. Previtali, C. Tabone, J.-M. Hartmann, L. Sanchez, L. Baud, V. Carron et al., “Advances in 3D CMOS sequential integration,” in International Electron Devices Meeting (IEDM). IEEE, 2009, pp. 1–4.

[28]   S.-M. Jung, H. Lim, K. H. Kwak, and K. Kim, “A 500-MHz DDR high-performance 72-Mb 3-D SRAM fabricated with laser-induced epitaxial c-Si growth technology for a stand-alone and embedded memory application,” IEEE Transactions on Electron Devices, vol. 57, no. 2, pp. 474–481, 2010.

[29]   J. Kraft, F. Schrank, J. Teva, J. Siegert, G. Koppitsch, C. Cassidy, E. Wachmann, F. Altmann, S. Brand, C. Schmidt et al., “3D sensor application with open through silicon via technology,” in Electronic Components and Technology Conference (ECTC). IEEE, 2011, pp. 560–566.

[30]   A. Papanikolaou, D. Soudris, and R. Radojcic, Three Dimensional System Integration. Springer, 2011, ch. 2.

[31]   S. W. Yoon, D. W. Yang, J. H. Koo, M. Padmanathan, and F. Carson, “3D TSV processes and its assembly/packaging technology,” in International Conference on 3D System Integration (3DIC). IEEE, 2009, pp. 1–5.

[32]   S. C. Johnson, “Via first, middle, last, or after?” 3D Packaging , vol. 13 , pp. 2–5 , December 2009.

[33]   S. Cho, “Technical challenges in TSV integration to Si,” in SEMATECH Symposium, Korea, 2011.

[34]   H. Yoshikawa, A. Kawasaki, Y. Nishimura, K. Tanida, K. Akiyama, M. Sekiguchi, M. Matsuo, S. Fukuchi, K. Takahashi, and others , “Chip scale camera module (CSCM) using through-silicon-via (TSV) ,” in International Solid-State Circuits Conference-Digest of Technical Papers (ISSCC) . IEEE, 2009, pp. 476–477.

[35]   D. Henry, F. Jacquet, M. Neyret, X. Baillin, T. Enot, V. Lapras, C. Brunet-Manquat, J. Charbonnier, B. Aventurier, and N. Sillon, “Through silicon vias technology for CMOS image sensors packaging,” in Electronic Components and Technology Conference (ECTC). IEEE, 2008, pp. 556–562.

[36]   J. Knickerbocker, P. Andry, E. Colgan, B. Dang, T. Dickson, X. Gu, C. Haymes, C. Jahnes, Y. Liu, J. Maria et al., “2.5D and 3D technology challenges and test vehicle demonstrations,” in Electronic Components and Technology Conference (ECTC). IEEE, 2012, pp. 1068–1076.

[37]   G.-Q. Zhang, W. van Driel, and X. Fan, Mechanics of Microelectronics. Springer, 2006, vol. 141, ch. 4.

[38]   L. B. Freund and S. Suresh, Thin Film Materials: Stress, Defect Formation and Surface Evolution. Cambridge University Press, 2003.

[39]   A. F. Bower, Applied Mechanics of Solids. CRC Press, 2011.

[40]   E. A. de Souza Neto, D. Peric, and D. R. J. Owen, Computational Methods for Plasticity: Theory and Applications. John Wiley & Sons, 2011, ch. 3.

[41]   T. M. Atanackovic and A. Guran, Theory of Elasticity for Scientists and Engineers. Springer, 2000.

[42]   L. N. Trefethen and D. Bau III, Numerical Linear Algebra. Siam, 1997, vol. 50.

[43]   MatWeb LLC. (2014, January) Tungsten, W properties. MatWeb - Materials Property Data. [Online]. Available:

[44]   MatWeb LLC. (2014, January) Copper, Cu cold drawn properties. MatWeb - Materials Property Data. [Online]. Available:

[45]   E. Török, A. Perry, L. Chollet, and W. Sproul, “Young’s modulus of TiN, TiC, ZrN and HFn,” Thin Solid Films, vol. 153, no. 1, pp. 37–43, 1987.

[46]   A. Perry, “A contribution to the study of poisson’s ratios and elastic constants of TiN, ZrN and HF,” Thin Solid Films, vol. 193, pp. 463–471, 1990.

[47]   MatWeb LLC. (2014, January) Titanium nitride (TiN) coating properties. MatWeb - Materials Property Data. [Online]. Available:

[48]   Eagle alloys corp. (2014, January) Tantalum - physical properties. Eagle Alloys Corporation. [Online]. Available:

[49]   F. Cverna, ASM Ready Reference: Thermal Properties of Metals. ASM International, 2002, chapter 2.

[50]   F. Cardarelli, Materials Handbook: a Concise Desktop Reference. Springer, 2008.

[51]   D. Rees, Basic Engineering Plasticity: an Introduction with Engineering and Manufacturing Applications. Butterworth-Heinemann, 2006.

[52]   M. A. Hopcroft, W. D. Nix, and T. W. Kenny, “What is the Young’s modulus of silicon?” Journal of Microelectromechanical Systems, vol. 19, no. 2, pp. 229–238, 2010.

[53]   R. Electronics, Semiconductor Reliability Handbook. Renesas Electronics, 2008.

[54]   T. L. Anderson, Fracture Mechanics: Fundamentals and Applications. CRC Press, 2005.

[55]   J. Gere and B. Goodno, Mechanics of Materials. Cengage Learning, 2008, p. 238.

[56]   C. Johnson, Numerical Solution of Partial Differential Equations by the Finite Element Method. Dover Publications, 2012.

[57]   O. Zienkiewicz, R. Taylor, and J. Zhu, The Finite Element Method: its Basis and Fundamentals. Butterworth-Heinemann, 2005.

[58]   K. H. Huebner, D. L. Dewhirst, D. E. Smith, and T. G. Byrom, The Finite Element Method for Engineers. John Wiley & Sons, 2008, p. 81.

[59]   S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods. Springer, 2008, vol. 15.

[60]   P. Frey and P.-L. George, Mesh Generation. John Wiley & Sons, 2010, vol. 32.

[61]   T. Gowers, J. Barrow-Green, and I. Leader, The Princeton Companion to Mathematics. Princeton University Press, 2010.

[62]   A. Jeffrey and D. Zwillinger, Table of Integrals, Series, and Products. Elsevier, 2007, p. 1055.

[63]   R. J. LeVeque, Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-Dependent Problems. Siam, 2007.

[64]   K. E. Atkinson, An Introduction to Numerical Analysis. John Wiley & Sons, 2008.

[65]   C. Harper, Electronic Packaging and Interconnection Handbook. McGraw-Hill, 2004, ch. 4.

[66]   S. Wolf, Silicon Processing for the VLSI Era: Deep-Submicron Process Technology, Vol. 4. Lattice Press, 2002.

[67]   MatWeb LLC. (2014, January) Aluminum, Al properties. MatWeb - Materials Property Data. [Online]. Available:

[68]   MatWeb LLC. (2014, January) Platinum silicide, PtSi properties. Matweb - Material Property Data. [Online]. Available:

[69]   MatWeb LLC. (2014, January) Titanium silicide, TiSi2 properties. Matweb - Material Property Data. [Online]. Available:

[70]   N. Stavitski, “Silicide-to-silicon specific contact resistance characterization: test structures and models,” Ph.D. dissertation, University of Twente, 2009.

[71]   MatWeb LLC. (2014, January) Cobalt silicide, CoSi2 properties. Matweb - Material Property Data. [Online]. Available:

[72]   Y. Nishi and R. Doering, Handbook of Semiconductor Manufacturing Technology, 2nd ed. CRC Press, 2012.

[73]   K. Tuck, A. Jungen, A. Geisberger, M. Ellis, and G. Skidmore, “A study of creep in polysilicon MEMS devices,” Journal of Engineering Materials and Technology, vol. 127, no. 1, pp. 90–96, 2005.

[74]   S. P. Murarka and S. W. Hymes, “Copper metallization for ULSL and beyond,” Critical Reviews in Solid State and Material Sciences, vol. 20, no. 2, pp. 87–124, 1995.

[75]   P. C. Andricacos, “Copper on-chip interconnections,” The Electrochemical Society Interface, vol. 8, no. 1, p. 6, 1999.

[76]   G. Brase, K. Lynne Holloway, and U. P. Schroeder, “Via first dual damascene process for copper metallization,” WO Application WO2 002 003 457 A3, June 6, 2002. [Online]. Available:

[77]   A. Pratt, “Overview of the use of copper interconnects in the semiconductor industry,” Advanced Energy Industries, Inc., Tech. Rep., 2004.

[78]   M. J. Wolf, T. Dretschkow, B. Wunderle, N. Jurgensen, G. Engelmann, O. Ehrmann, A. Uhlig, B. Michel, and H. Reichl, “High aspect ratio TSV copper filling with different seed layers,” in Electronic Components and Technology Conference (ECTC). IEEE, 2008, pp. 563–570.

[79]   M. Koyanagi, “3D integration technology and reliability,” in International Reliability Physics Symposium (IRPS). IEEE, 2011, pp. 3F–1.

[80]   K. Takahashi and M. Sekiguchi, “Through silicon via and 3-D wafer/chip stacking technology,” in Symposium on VLSI Circuits, ser. Digest of Technical Papers. IEEE, 2006, pp. 89–92.

[81]   S. Chen, T. V. Baughn, Z. J. Yao, and C. L. Goldsmith, “A new in situ residual stress measurement method for a MEMS thin fixed-fixed beam structure,” Journal of Microelectromechanical Systems, vol. 11, no. 4, pp. 309–316, 2002.

[82]   K. H. Lu, X. Zhang, S.-K. Ryu, J. Im, R. Huang, and P. S. Ho, “Thermo-mechanical reliability of 3-D ICs containing through silicon vias,” in Electronic Components and Technology Conference (ECTC). IEEE, 2009, pp. 630–634.

[83]   A. P. Singulani, H. Ceric, and S. Selberherr, “Thermo-mechanical simulations of an open tungsten TSV,” in Electronics Packaging Technology Conference (EPTC). IEEE, 2012, pp. 107–111.

[84]   C. Cassidy, J. Kraft, S. Carniello, F. Roger, H. Ceric, A. P. Singulani, E. Langer, and F. Schrank, “Through silicon via reliability,” IEEE Transactions on Device and Materials Reliability, vol. 12, no. 2, pp. 285–295, 2012.

[85]   C. Krauss, S. Labat, S. Escoubas, O. Thomas, S. Carniello, J. Teva, and F. Schrank, “Stress measurements in tungsten coated through silicon vias for 3D integration,” Thin Solid Films, vol. 530, pp. 91–95, 2013.

[86]   M. F. Doerner and W. D. Nix, “Stresses and deformation processes in thin films on substrates,” Critical Reviews in Solid State and Material Sciences, vol. 14, no. 3, pp. 225–268, 1988.

[87]   A. Faraji, Elastic and Elastoplastic Contact Analysis: Using Boundary Elements and Mathematical Programming. WIT Press, 2005.

[88]   M. Duncan, Applied Geometry for Computer Graphics and CAD. Springer, 2005.

[89]   G. Janssen, M. Abdalla, F. Van Keulen, B. Pujada, and B. Van Venrooy, “Celebrating the 100th anniversary of the Stoney equation for film stress: Developments from polycrystalline steel strips to single crystal silicon wafers,” Thin Solid Films, vol. 517, no. 6, pp. 1858–1867, 2009.

[90]   A. Toselli and O. B. Widlund, Domain Decomposition Methods: Algorithms and Theory. Springer, 2005, vol. 34.

[91]   D. Hull and D. J. Bacon, Introduction to Dislocations. Butterworth-Heinemann, 2001.

[92]   H. J. Frost and M. F. Ashby, Deformation Mechanism Maps: the Plasticity and Creep of Metals and Ceramics. Pergamon Press, 1982.

[93]   D. Weiss, “Deformation mechanisms in pure and alloyed copper films,” Ph.D. dissertation, Universität Stuttgart, 2000.

[94]   D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, 1989.

[95]   D. M. Dobkin and M. K. Zuraw, Principles of Chemical Vapor Deposition. Springer, 2003.

[96]   D. L. Smith, Thin-Film Deposition: Principles and Practice. McGraw-Hill, 1995.

[97]   A. Pimpinelli and J. Villain, Physics of Crystal Growth. Cambridge University Press, 1998, vol. 11.

[98]   S. C. Seel and C. V. Thompson, “Tensile stress generation during island coalescence for variable island-substrate contact angle,” Journal of Applied Physics, vol. 93, no. 11, pp. 9038–9042, 2003.

[99]   S. C. Seel, “Stress and structure evolution during Volmer-Weber growth of thin films,” Ph.D. dissertation, Massachusetts Institute of Technology, 2002.

[100]   A. Rajamani, B. W. Sheldon, E. Chason, and A. F. Bower, “Intrinsic tensile stress and grain boundary formation during Volmer–Weber film growth,” Applied Physics Letters, vol. 81, no. 7, pp. 1204–1206, 2002.

[101]   J. A. Floro, E. Chason, R. C. Cammarata, and D. J. Srolovitz, “Physical origins of intrinsic stresses in Volmer–Weber thin films,” MRS Bulletin, vol. 27, no. 01, pp. 19–25, 2002.

[102]   R. Cammarata, T. Trimble, and D. Srolovitz, “Surface stress model for intrinsic stresses in thin films,” Journal of Materials Research , vol. 15 , no. 11 , pp. 2468–2474, 2000.

[103]   R. Koch, “The intrinsic stress of polycrystalline and epitaxial thin metal films,” Journal of Physics: Condensed Matter, vol. 6, no. 45, p. 9519, 1994.

[104]   R. Hoffman, “Stresses in thin films: The relevance of grain boundaries and impurities,” Thin Solid Films, vol. 34, no. 2, pp. 185–190, 1976.

[105]   W. Nix and B. Clemens, “Crystallite coalescence - a mechanism for intrinsic tensile stresses in thin films ,” Journal of Materials Research , vol. 14 , no. 8 , pp. 3467–3473, 1999.

[106]   G. Cheng-Hsin, Chiu and Huajian, “Stress singularities along a cycloid rough surface,” International Journal of Solids and Structures, vol. 30 , no. 21 , pp. 2983–3012, 1993.

[107]   L. Freund and E. Chason, “Model for stress generated upon contact of neighboring islands on the surface of a substrate,” Journal of Applied Physics, vol. 89, no. 9, pp. 4866–4873, 2001.

[108]   K. L. Johnson and K. L. Johnson, Contact Mechanics. Cambridge University Press, 1987.

[109]   C. V. Thompson, “On the grain size and coalescence stress resulting from nucleation and growth processes during formation of polycrystalline thin films,” Journal of Materials Research, vol. 14, no. 07, pp. 3164–3168, 1999.