Next: 4.4.4 Discussion
Up: 4.4 Optimization Process
Previous: 4.4.2 Sensitivity Analysis
4.4.3 Analytical Profiles
Gaussian functions are used to simplify the rather complex results
from the two-dimensional approach as discussed earlier in
Section 3.1. The parameters describing these analytical doping
models are used as optimization parameters for further optimizations.
The doping peak in the channel region resulting from the two-dimensional
optimization is substituted by a Gaussian peak. To provide means of
preventing punchthrough two methods are utilized: In the first method the
background substrate doping is one additional optimization parameter
(Method 1). The second method uses a Gaussian peak located under the source
well (Method 2).
In Listing 4.7 and Listing 4.8 the
specific parts of the device generation sub-model mkdev.mod used within
the SIESTA framework are shown for the two different methods. The used
initial, minimum, and maximum values for the doping parameters are listed in
Table 4.2. It is to note that the doping values in this
table are given in units (cm
)
whereas the logarithmic format is used
within the optimization process and, therefore, also in the listed sub-models.
This linearizes the dependence of the drain current on the doping parameters
and, therefore, improves the convergence behavior.
Listing 4.7: The optimization
parameter setup using one Gaussian function,
Method 1.
.
.
.
(Nsub bound-float ... ... ...)
(N bound-float ... ... ...)
(x0 bound-float ... ... ...) ; um
(y0 bound-float ... ... ...) ; um
(deltax bound-float ... ... ...) ; um
(sigx bound-float ... ... ...) ; um
(sigy bound-float ... ... ...) ; um
.
.
.
|
Listing 4.8: The optimization
parameter setup using two Gaussian functions,
Method 2.
.
.
.
(Nsub float 15.)
(N bound-float ... ... ...)
(x0 bound-float ... ... ...) ; um
(y0 bound-float ... ... ...) ; um
(deltax bound-float ... ... ...) ; um
(sigx bound-float ... ... ...) ; um
(sigy bound-float ... ... ...) ; um
(N_2 bound-float ... ... ...)
(x0_2 float 0.0) ; um
(y0_2 bound-float ... ... ...) ; um
(deltax_2 bound-float ... ... ...) ; um
(sigx_2 bound-float ... ... ...) ; um
(sigy_2 bound-float ... ... ...) ; um
.
.
.
|
Table 4.2:
Parameter setup for optimizations
with Gaussian functions.
| |
Device Generation A |
Device Generation B |
| param. |
unit |
init |
min |
max |
init |
min |
max |
 |
cm |
1 10 |
1 10 |
1 10 |
3.16 10 |
3.16 10 |
3.16 10 |
| Peak 1 |
 |
cm |
5 10 |
3.16 10 |
1 10 |
1 10 |
1 10 |
3.16 10 |
 |
m |
0.25 |
0.2 |
0.29 |
0.1 |
0.08 |
0.11 |
 |
m |
0.012 |
0 |
0.05 |
0.01 |
0 |
0.03 |
 |
m |
0 |
0 |
0.05 |
0.005 |
0 |
0.02 |
 |
m |
0.017 |
0.01 |
0.05 |
0.01 |
0.004 |
0.02 |
 |
m |
0.01 |
0.01 |
0.05 |
0.005 |
0.004 |
0.02 |
| Peak 2 |
 |
cm |
1 10 |
1 10 |
1 10 |
3.16 10 |
3.16 10 |
3.16 10 |
 |
m |
0.055 |
0.15 |
0.2 |
0.065 |
0.05 |
0.08 |
 |
m |
0.16 |
0.04 |
0.1 |
0.025 |
0.02 |
0.04 |
 |
m |
0.04 |
0.01 |
0.05 |
0.015 |
0.004 |
0.02 |
 |
m |
0.015 |
0.01 |
0.05 |
0.006 |
0.004 |
0.02 |
As already mentioned in Section 3.2 the initial parameters are
obtained from a manual fit to the two-dimensional optimization results.
Reasonable values for the minimum and maximum ranges are chosen to avoid
unrealistic doping structures. In case of Method 2 the substrate doping
is not an optimization parameter and is kept at 10
cm
.
The Makedevice input deck contains an additional Peak3 section given
in Listing 4.9 accounting for the doping peak in the channel. For
Method 2 the input deck is completed by another doping peak definition
Peak4 shown in Listing 4.10 accounting for the doping
peak under the source well.
Listing 4.9: The Peak3
section in the Makedevice input deck for optimizations with Gaussian functions,
Method 1 and Method 2.
Peak
{
.
.
.
Peak3 { // channel Peak
on = yes; // switch on or off
mode = "gauss"; // gauss, cosine, or pearson mode
dopType = if (~type == "NMOS", "acceptor", "donor");
// acceptor or donor doping
N = pow10(<(N)>) *1"cm^-3"; // peak doping value
x = <(x0)> um; // x-position of the peak
xLength = <(deltax)> um; // x-length of the peak, must be >= 0
y = <(y0)> um; // y-position of the peak
yLength = 0 um; // y-length of the peak, must be >= 0
xSigLeft = <(sigx)> um; // left x-sigma of the peak
xSigRight = xSigLeft; // right x-sigma of the peak
ySigUpper = <(sigy)> um; // upper y-sigma of the peak
ySigLower = ySigUpper; // lower y-sigma of the peak
}
.
.
.
}
|
Listing 4.10: The additional
Peak4 section in the Makedevice input deck for optimizations with
Gaussian functions, Method 2.
Peak
{
.
.
.
Peak4 { // peak underneath the source well
on = yes; // switch on or off
mode = "gauss"; // gauss, cosine, or pearson mode
dopType = if (~type == "NMOS", "acceptor", "donor");
// acceptor or donor doping
N = pow10(<(N_2)>) *1"cm^-3"; // peak doping value
x = <(x0_2)> um; // x-position of the peak
xLength = <(deltax_2)> um; // x-length of the peak, must be >= 0
y = <(y0_2)> um; // y-position of the peak
yLength = 0 um; // y-length of the peak, must be >= 0
xSigLeft = <(sigx_2)> um; // left x-sigma of the peak
xSigRight = xSigLeft; // right x-sigma of the peak
ySigUpper = <(sigy_2)> um; // upper y-sigma of the peak
ySigLower = ySigUpper; // lower y-sigma of the peak
}
}
|
Fig. 4.8 and Fig. 4.9 show the acceptor doping
profiles as the results of the optimization approach using only one Gaussian
function (Method 1) for the Device Generation A and Device Generation B,
respectively. Fig. 4.10 and Fig. 4.11 show the
acceptor doping profiles as the results of the optimization approach using two
Gaussian functions (Method 2). The resulting parameters of the Gaussian
functions are summarized in Table 4.3.
Figure 4.8:
The result of the optimization using Gaussian functions
for Device Generation A, Method 1.
|
|
Figure 4.9:
The result of the optimization using Gaussian functions
for Device Generation B, Method 1.
|
|
Figure 4.10:
The result of the optimization using Gaussian functions
for Device Generation A, Method 2.
|
|
Figure 4.11:
The result of the optimization using Gaussian functions
for Device Generation B, Method 2.
|
|
Table 4.3:
Optimized parameters after drive current optimizations with
Gaussian functions.
| |
Device Generation A |
Device
Generation B |
| param. |
unit |
Method 1 |
Method 2 |
Method 1 |
Method 2 |
 |
cm |
3.04 10 |
|
1.21 10 |
|
| Peak 1 |
 |
cm |
2.18 10 |
2.20 10 |
5.73 10 |
7.81 10 |
 |
m |
0.23977 |
0.24980 |
0.10068 |
0.10283 |
 |
m |
0.01907 |
0.01613 |
0.00919 |
0.00912 |
 |
m |
0.00390 |
0.00000 |
0.01058 |
0.00665 |
 |
m |
0.01141 |
0.01364 |
0.01161 |
0.00924 |
 |
m |
0.01193 |
0.01029 |
0.00462 |
0.00400 |
| Peak 2 |
 |
cm |
|
1.14 10 |
|
3.63 10 |
 |
m |
|
0.05670 |
|
0.02151 |
 |
m |
|
0.15976 |
|
0.06301 |
 |
m |
|
0.03972 |
|
0.01548 |
 |
m |
|
0.01566 |
|
0.00825 |
Next: 4.4.4 Discussion
Up: 4.4 Optimization Process
Previous: 4.4.2 Sensitivity Analysis
Michael Stockinger
2000-01-05