previous up next Dissertation Enzo Ungersboeck contents
 Previous: 3.2 Stress   Up: 3. Strained Bulk Band Structure   Next: 3.3.1 The Miller Index Notation


3.3 Stress-Strain Relations

A mathematical expression of the stress-strain relation for the elastic deformation of materials was first suggested by Robert Hooke

$\displaystyle {\ensuremath{\mathitbf{F}}} = k {\ensuremath{\mathitbf{u}}}\ .$ (3.10)

Here, $ {\ensuremath{\mathitbf{F}}}$ is the applied force, $ {\ensuremath{\mathitbf{u}}}$ is the deformation of the elastic body subjected to the force $ {\ensuremath{\mathitbf{F}}}$, and $ k$ is the material dependent spring constant. Cauchy generalized Hooke's law for three dimensional elastic bodies

$\displaystyle \sigma_{ij} = C_{ijkl} \varepsilon_{kl}\ ,$ (3.11)

where $ C_{ijkl}$ is the elastic stiffness tensor of order four, which contains 81 entries. The number of components can be reduced invoking symmetry arguments [Kittel96]. For a cubic semiconductor such as Si, Ge or GaAs, there are only three independent components, namely $ c_{11}, c_{12}$, and $ c_{44}$. The elastic stiffness constants for Si and Ge are given in Table 3.1.

Table 3.1: Elastic stiffness constants of Si and Ge [Levinshtein99].
  Silicon Germanium Units
$ c_{11}$ 166.0 126.0 GPa
$ c_{12}$ 64.0 44.0 GPa
$ c_{44}$ 79.6 67.7 GPa
       


Exploiting the symmetry of a cubic semiconductor the elastic stiffness tensor can be written as a $ 6\times 6$ matrix, and generalized Hooke's law reduces to a set of six equations

$\displaystyle \begin{pmatrix}\sigma_{xx} \\ \sigma_{yy} \\ \sigma_{zz} \\ \sigm...
...remath{\varepsilon_{xz}}} \\ 2{\ensuremath{\varepsilon_{xy}}} \\ \end{pmatrix}.$ (3.12)

If the stresses are known, the values for the strains are to be determined by inversion of (3.11). Introducing the elastic compliance tensor $ S_{ijkl}$, the inverted equation becomes in the index notation

$\displaystyle \varepsilon_{ij} = S_{ijkl} \sigma_{kl}\ ,$ (3.13)

or in matrix form

$\displaystyle \begin{pmatrix}{\ensuremath{\varepsilon_{xx}}} \\ {\ensuremath{\v...
...} \\ \sigma_{zz} \\ \sigma_{yz} \\ \sigma_{xz} \\ \sigma_{xy} \\ \end{pmatrix}.$ (3.14)

The elastic compliance constants $ s_{ij}$ are related to the elastic stiffness constants $ c_{ij}$ via

$\displaystyle s_{11}$ $\displaystyle = \frac{c_{11}+c_{12}}{c_{11}^2 + c_{11} c_{12} - 2 c_{12}^2}\ ,$    
$\displaystyle s_{12}$ $\displaystyle = \frac{-c_{12}}{c_{11}^2 + c_{11} c_{12} - 2 c_{12}^2}\ ,\quad\mathrm{and}$    
$\displaystyle s_{44}$ $\displaystyle = \frac{1}{c_{44}}\ .$    

Note that the stiffness constants are traditionally represented by the symbol $ c_{ij}$, while $ s_{ij}$ is reserved for the compliance constants.


Subsections


previous up next   contents
 Previous: 3.2 Stress   Up: 3. Strained Bulk Band Structure   Next: 3.3.1 The Miller Index Notation
E. Ungersboeck: Advanced Modelling Aspects of Modern Strained CMOS Technology