next up previous contents
Next: 5 Finite Element Scheme Up: 5 Void evolution and Previous: 3 Numerical Implementation


4 Setting of the Initial Order Parameter Profile and Initial Grid Refinement $ \Lambda _{h}(0)$

The initial order parameter profile depends on the initial shape of the void $ \Gamma(0)$ and can be expressed as

$\displaystyle \phi(x,y)= \begin{cases}+1& \text{if} \quad d > \frac{\epsilon\pi...
...{\epsilon\pi}{2}, \ -1& \text{if} \quad d < -\frac{\epsilon\pi}{2} \end{cases}$ (263)

Where $ d=dist(P(x,y),\Gamma(0))$ is the signed normal distance of the point from the initial interface $ \Gamma(0)$. To obtain sufficient resolution of this initial profile, the basic grid $ T_{h}$ is transformed into grid $ \Lambda _{h}(0)$ obeying the following initial grid refinement criterion (IGRC) for the circular void with center $ O$ and radius $ r$:

$\displaystyle \vert dist(C_{K},O)-r\vert\leq \frac{\epsilon\pi}{2} \quad \wedge \quad h_{K} > \frac{\epsilon\pi}{n}$ (264)

$ n$ is the chosen number of grid elements across the void-metal interface width, $ h_{K}$ is the longest vertex of the triangle $ K$, and $ C_{K}$ is its center of gravity. Now an adaptive algorithm defined in Section 4.5.7 transforms the basic grid $ T_{h}$ into an initial grid $ \Lambda _{h}(0)$ according to $ IGRC$.


next up previous contents
Next: 5 Finite Element Scheme Up: 5 Void evolution and Previous: 3 Numerical Implementation

J. Cervenka: Three-Dimensional Mesh Generation for Device and Process Simulation