next up previous contents
Next: 6 Maintaining the Grid Up: 5 Void evolution and Previous: 4 Setting of the

5 Finite Element Scheme

$ \Lambda_{h}(t_{n})$ is a triangulation of the area $ T$ at discrete time $ t_{n}$, and $ \{\phi_{i}^{n-1}\}_{i=0}^{N-1}$ are discrete nodal values of the order parameter on this triangulation. A finite element based iteration for solving (4.50) on grid $ \Lambda_{h}(t_{n})$ and evaluating the order parameter at the time $ t_{n+1}=t_{n}+\Delta t$ consists of two steps [88]:

Step 1. For the $ k^{th}$ iteration of the $ n+1^{th}$ time step the linear system of equations has to be solved:

$\displaystyle \epsilon \frac{\pi}{2} M_{ii}\phi_{i}^{n+1,k}+\Delta t D_{s}K_{ii}\mu_{i}^{n+1,k}=\alpha_{i}$ (265)

$\displaystyle M_{ii}\mu_{i}^{n+1,k}-\tau\biggl(\frac{1}{\epsilon}M_{ii}+\epsilon K_{ii}\biggr)\phi_{i}^{n+1,k}=\beta_{i},$ (266)

where

$\displaystyle \alpha_{i}=\epsilon \frac{\pi}{2}M_{ii}\phi_{i}^{n}-\Delta t D_{s}\sum_{i\neq j}K_{ij}\mu_{j}^{n+1,k-1}$ (267)

$\displaystyle \beta_{i}=\tau\epsilon \sum_{i\neq j} K_{ij}\phi_{j}^{n+1,k-1}-\vert e\vert Z^{*}M_{ii}V_{i}^{n}$ (268)

for each $ i=0,N-1$ of the nodal values $ (\phi^{n+1}_{i},\mu^{n+1}_{i})$ of the triangulation $ \Lambda_{h}(t_{n})$. $ [M]_{ij}$ and $ [K]_{ij}$ are the lumped mass and stiffness matrix, respectively and $ \tau = \frac{4 \Omega \gamma_{s}}{\pi}$.

Step 2. All nodal values $ \{\phi_{i}^{n+1}\}_{i=0}^{N-1}$ are projected on $ [-1, 1]$ by a function

$\displaystyle \rho(x)=max(-1,min(1,x)).$ (269)

For solving (4.52) a conventional finite element scheme is applied [76].


next up previous contents
Next: 6 Maintaining the Grid Up: 5 Void evolution and Previous: 4 Setting of the

J. Cervenka: Three-Dimensional Mesh Generation for Device and Process Simulation