next up previous contents
Next: 4.3 Simulation in FEDOS Up: 4.2 Discretization of the Previous: 4.2.3 Discretization of the


4.2.4 Discretization of the Mechanical Equations

The deformation in a three-dimensional body is expressed by the displacement field

$\displaystyle \vec d(\vec r) = \begin{bmatrix}u(\vec r)\\ v(\vec r)\\ w(\vec r)\end{bmatrix},$ (4.54)

where $ u(\vec r)$, $ v(\vec r)$, and $ w(\vec r)$ are the displacements in the x, y, and z direction, respectively. The displacement is discretized on a tetrahedral element as [151]

$\displaystyle \vec d(\vec r) = \sum_{i=1}^{4}\vec d_i \symShapeFun_i(\vec r),$ (4.55)

which leads to the components discretization

$\displaystyle u(\vec r) = \ensuremath{\sum_{i=1}^{4}{u}}_{i}^n\symShapeFun_i(\v...
...),\quad w(\vec r) = \ensuremath{\sum_{i=1}^{4}{w}}_{i}^n\symShapeFun_i(\vec r).$ (4.56)

Applying this discretization in the strain-displacement relationship (3.79), the components of the strain tensor can be written as

$\displaystyle \boldsymbol\symStrain = \mathbf{B}\mathbf{d} = \begin{bmatrix}\mathbf{B_1}\ \mathbf{B_2}\ \mathbf{B_3}\ \mathbf{B_4} \end{bmatrix} \mathbf{d},$ (4.57)

where $ \mathbf{B_i}$ is the matrix of the derivatives of the shape functions for the node i [151]

$\displaystyle \mathbf{B_i} = \begin{bmatrix}\displaystyle\ensuremath{\ensuremat...
...\frac{\partial \symShapeFun_i}{\partial x}}} \end{bmatrix},\quad i = 1,\dots,4,$ (4.58)

and the displacement matrix

$\displaystyle \mathbf{d} = \begin{bmatrix}\vec d_1\\ \vec d_2\\ \vec d_3\\ \vec d_4 \end{bmatrix}.$ (4.59)

Using (4.57), the stress-strain equation (3.81) can written as a function of the displacements according to

$\displaystyle \boldsymbol\symHydStress = \mathbf{C}(\boldsymbol\symStrain - \bo...
...in_{0}) = \mathbf{C}\mathbf{B}\mathbf{d} - \mathbf{C}\boldsymbol\symStrain_{0}.$ (4.60)

Applying the principle of virtual work, the work of internal stresses on a continuous elastic body is given by [151]

$\displaystyle W_{in}=\int_{\symDomain} \boldsymbol\symStrain^{T}\boldsymbol\symHydStress\ d\symDomain,$ (4.61)

where $ \boldsymbol\symStrain^{T}$ is the transposed strain tensor. Combining (4.57), (4.60), and (4.61) the work on a finite element is written as

$\displaystyle W_{in}^{el} = \mathbf{d}^T \int_{T} \left(\mathbf{B}^T\mathbf{C}\...
...mathbf{d} - \mathbf{B}^T\mathbf{C}\boldsymbol\symStrain_{0}\right) d\symDomain.$ (4.62)

From energy balance the internal work should be equal to the work done by external forces, i.e. $ W_{in} = W_{ext}$, and, since during electromigration there are no external forces ($ W_{ext}=0$), one obtains

$\displaystyle \int_{T} \left(\mathbf{B}^T\mathbf{C}\mathbf{B}\mathbf{d} - \mathbf{B}^T\mathbf{C}\boldsymbol\symStrain_{0}\right) d\symDomain = 0,$ (4.63)

or

$\displaystyle \int_{T} \mathbf{B}^T\mathbf{C}\mathbf{B}\mathbf{d}\ d\symDomain = \int_{T} \mathbf{B}^T\mathbf{C}\boldsymbol\symStrain_{0}\ d\symDomain,$ (4.64)

which can be conveniently expressed as

$\displaystyle \mathbf{K}\mathbf{d} = \mathbf{f_{in}},$ (4.65)

where

$\displaystyle \mathbf{K} = \int_{T} \mathbf{B}^T\mathbf{C}\mathbf{B}\ d\symDomain,% = \mathbf{B}^T\mathbf{C}\mathbf{B}V_e,
$ (4.66)

is the so-called stiffness matrix, and

$\displaystyle \mathbf{f_{in}} = \int_{T} \mathbf{B}^T\mathbf{C}\boldsymbol\symStrain_{0}\ d\symDomain,% = \mathbf{B}^T\mathbf{C}\boldsymbol\symStrain_{0}V_e,
$ (4.67)

is the internal force vector.

Equation (4.65) forms a linear system of equations of 12 equations with 12 unknowns (the three displacement components $ u$, $ v$, and $ w$ for each tetrahedron node). The inelastic strain $ \boldsymbol\symStrain_{0}$ determines the internal force vector according to the electromigration induced strain given by (3.78).


next up previous contents
Next: 4.3 Simulation in FEDOS Up: 4.2 Discretization of the Previous: 4.2.3 Discretization of the

R. L. de Orio: Electromigration Modeling and Simulation