next up previous contents
Next: 4.2.4 Discretization of the Up: 4.2 Discretization of the Previous: 4.2.2 Discretization of the


4.2.3 Discretization of the Vacancy Balance Equation

The combination of (3.74) with (3.75) and (3.76) yields the vacancy balance equation

  $\displaystyle \ensuremath{\ensuremath{\frac{\partial \CV}{\partial t}}} +\ensur...
...Factor\symAtomVol}{\kB\T}\CV\ensuremath{\nabla{\symHydStress}}\biggr) \right]}}$    
  $\displaystyle +\frac{1}{\symVacRelTime}\left(q\Cim - \Ceq\right) = 0,$ (4.41)

for which the weak formulation of the form

  $\displaystyle \int_{\symDomain}\ensuremath{\ensuremath{\frac{\partial \CV}{\par...
...nsuremath{\cdot}\ensuremath{\nabla{\symShapeFun_p}}\right)\ d\symDomain \right.$    
  $\displaystyle - \left. \frac{\Q}{\kB\bar\T^2} \int_{\symDomain}\CV\left(\ensure...
...nsuremath{\cdot}\ensuremath{\nabla{\symShapeFun_p}}\right)\ d\symDomain \right]$ (4.42)
  $\displaystyle +\int_{\symDomain}\frac{1}{\symVacRelTime}\left(q\Cim - \Ceq\right)\symShapeFun_p\ d\symDomain = 0, \quad p=1,...,N,$    

is obtained under the assumption of a Neumann boundary condition. Applying the electric potential and the temperature discretization, (4.29) and (4.36), respectively, together with

$\displaystyle \CV^n = \ensuremath{\sum_{k=1}^{4}{C}}_{v,k}^n\symShapeFun_k(\vec r),$ (4.43)

$\displaystyle \symHydStress^n = \ensuremath{\sum_{l=1}^{4}{\symHydStress}}_l^n\symShapeFun_l(\vec r),$ (4.44)

$\displaystyle \Cim^n = \ensuremath{\sum_{m=1}^{4}{C}}_{im,m}^n\symShapeFun_m(\vec r),$ (4.45)

and the backward Euler time discretization, the vacancy balance equation discretized in a single element is given by

  $\displaystyle \sum_{k=1}^{4} C_{v,k}^n \int_{T} \symShapeFun_k \symShapeFun_p\ ...
...n_k}}\ensuremath{\cdot}\ensuremath{\nabla{\symShapeFun_p}}\ d\symDomain \right.$    
  $\displaystyle + \frac{\vert\Z\vert\ee}{\kB\bar\T} \sum_{i=1}^4\sum_{k=1}^4 \sym...
...th{\cdot}\ensuremath{\nabla{\symShapeFun_p}}\right) \symShapeFun_k\ d\symDomain$    
  $\displaystyle - \frac{\Q}{\kB\bar\T^2} \sum_{j=1}^4\sum_{k=1}^4 \T_j^n C_{v,k}^...
...th{\cdot}\ensuremath{\nabla{\symShapeFun_p}}\right) \symShapeFun_k\ d\symDomain$ (4.46)
  $\displaystyle + \left. \frac{\symVacRelFactor\symAtomVol}{\kB\bar\T} \sum_{l=1}...
...}\ensuremath{\nabla{\symShapeFun_p}}\right) \symShapeFun_k\ d\symDomain \right]$    
  $\displaystyle + \frac{\Delta t_n}{\symVacRelTime} \left(q\sum_{m=1}^4 C_{im,m}^...
...symDomain - \Ceq\int_{T}\symShapeFun_p\ d\symDomain\right) = 0,\qquad p=1,...,4$    

under the assumption that $ \symVacRelTime$, $ q$, and $ \Ceq$ are constant inside an element.

Using the shorthand notation (4.31), (4.38), (4.39), and

$\displaystyle V_p = \int_{T} \symShapeFun_p\ d\symDomain = \det(\mathbf{J})\int_{0}^{1}\int_{0}^{1-\xi}\int_{0}^{1-\xi-\eta}\symShapeFun_p^t\ d\zeta d\eta d\xi,$ (4.47)

(4.46) is written as

  $\displaystyle \sum_{k=1}^{4} C_{v,k}^n M_{kp} - \sum_{k=1}^{4}C_{v,k}^{n-1} M_{...
...B\bar\T} \sum_{i=1}^4\sum_{k=1}^4 \symElecPot_i^n C_{v,k}^n \Theta_{ipk}\right.$    
  $\displaystyle \left. - \frac{\Q}{\kB\bar\T^2} \sum_{j=1}^4\sum_{k=1}^4 \T_j^n C...
...ar\T} \sum_{l=1}^4\sum_{k=1}^4 \symHydStress_l^n C_{v,k}^n \Theta_{lpk} \right]$ (4.48)
  $\displaystyle + \frac{\Delta t_n}{\symVacRelTime}\left( q\sum_{m=1}^4 C_{im,m}^n M_{mp} - \Ceq V_p\right) = 0,\qquad p=1,...,4.$    

In the above derivation the vacancy diffusivity is treated as a scalar diffusion coefficient. In order to take into account the anisotropy of diffusivity due to the mechanical stress, as presented in Section 3.2.2, a diffusivity tensor must be applied. This requires a slight modification of (4.48) to

  $\displaystyle \sum_{k=1}^{4} C_{v,k}^n M_{kp} - \sum_{k=1}^{4}C_{v,k}^{n-1} M_{...
...B\bar\T} \sum_{i=1}^4\sum_{k=1}^4 \symElecPot_i^n C_{v,k}^n \Theta_{ipk}\right.$    
  $\displaystyle \left. - \frac{\Q}{\kB\bar\T^2} \sum_{j=1}^4\sum_{k=1}^4 \T_j^n C...
...ar\T} \sum_{l=1}^4\sum_{k=1}^4 \symHydStress_l^n C_{v,k}^n \Theta_{lpk} \right]$ (4.49)
  $\displaystyle + \frac{\Delta t_n}{\symVacRelTime}\left( q\sum_{m=1}^4 C_{im,m}^n M_{mp} - \Ceq V_p\right) = 0,\qquad p=1,...,4.$    

where the diffusivity tensor $ \mathbf{D}$ is now incorporated into $ K_{kp}$ and $ \Theta_{ipk}$, given by

$\displaystyle K_{ip} = \ensuremath{\int_{T}{\mathbf{D}\ensuremath{\nabla{{\symS...
...i}}}\ensuremath{\cdot}\ensuremath{\nabla{{\symShapeFun}_{p}}}}\ d{\symDomain}},$ (4.50)

and

$\displaystyle \Theta_{ipk} = \int_{T} \left(\mathbf{D}\ensuremath{\nabla{\symSh...
...h{\cdot}\ensuremath{\nabla{\symShapeFun_p}}\right) \symShapeFun_k\ d\symDomain.$ (4.51)

At material interfaces and grain boundaries the trapped vacancy concentration is governed by (3.76), rewritten here as

$\displaystyle \ensuremath{\ensuremath{\frac{\partial \Cim}{\partial t}}} - \frac{1}{\symVacRelTime}\left(\Ceq-q\Cim\right) = 0.$ (4.52)

The finite element formulation of this equation follows the same procedure described above, which yields the discretization

  $\displaystyle \sum_{m=1}^{4} C_{im,m}^n M_{mp} - \sum_{m=1}^{4}C_{im,m}^{n-1} M_{mp}$    
  $\displaystyle + q\frac{\Delta t_n}{\symVacRelTime}\sum_{m=1}^4 C_{im,m}^n M_{mp} - \frac{\Delta t_n}{\symVacRelTime}\Ceq V_p = 0,\qquad p=1,...,4.$ (4.53)


next up previous contents
Next: 4.2.4 Discretization of the Up: 4.2 Discretization of the Previous: 4.2.2 Discretization of the

R. L. de Orio: Electromigration Modeling and Simulation