In these equations, the considered volume has to be subdivided into 80 sections and the position has to be given relatively to this scale. This means, that , , and are given as unitless multiples of 1/80 of the extension of the simulation domain in -, -, and -direction. Therefore the volume where the rates are defined ranges from 0 to 80 in -, -, and -direction and defines the initial resist surface. and represent the impact of magnitudes and phases, respectively, of the electric field components. The final rate summarizes the effects of the different components and is given as normalized etch rate[nm/s]. The same nomenclature and units apply for the two examples following in Section 5.2.2 and Section 5.2.3.
(5.1) gives the overall formula of the interfering intensities for the first test example. The equations describe five Gaussian beams. Fig. 5.2 shows the bird's eye view of the resulting profile after 53s. The uniformly grey plane on top of the simulation domain indicates the initial resist surface with the 5 cones buried downwards into the structure.
The first observation from Fig. 5.2 is that the cellular algorithm is well suited to develop the circular shape of the Gaussian peaks without facets. Secondly, the Gaussian peaks in close vicinity to each other illustrate an important effect in the evolving surface. The surface normals are continuous for each of the Gaussian peaks, but become undefined at intersections of the beams forming an U-shaped ridge. This is a challenging task for the profile evolution, especially for surface-based simulators. The volume-based cellular implementation implicitly handles such cases.
Prev: 5.2 Benchmarks
Up: 5.2 Benchmarks
Next: 5.2.2 Reflective Notching