next up previous index
Next: F Second Order Co Up: Dissertation Christoph Wasshuber Previous: D Integration of Fermi

  
E Fermi's Golden Rule

   The time dependent Schrödinger Equation can be written as
 \begin{gather}
(H_0 + H_1)\psi = \text{i}\hbar\frac{\partial\psi}{\partial t},
\end{gather}
where H1 is a small perturbation to the Hamiltonian H0. The solution of the unperturbed case is
 \begin{gather}
H_0\psi_n=\hbar\omega_n\psi_n \quad\text{with}\quad
\int\vert\psi_n\vert^2\,d^3\mathbf{r} = 1 \quad\text{and}\quad n=0,1,2,3,\ldots
\end{gather}
The eigenvalues are $\hbar\omega_n$, and the orthonormal eigenfunctions are $\psi_n$. Under the assumption that the perturbation H1 is small, the wave function for the perturbed case can be expanded in a series of the orthonormal wave functions of the unperturbed case [29].
 \begin{gather}
\psi=\sum_n c_n(t)\psi_n e^{-\text{i}\omega_n t}
\end{gather}
Inserting (E.3) into the time dependent Schrödinger equation (E.1), and using (E.2) gives
\begin{gather}\text{i}\hbar\sum_n\frac{dc_n(t)}{dt}\psi_n e^{-\text{i}\omega_n t} =
\sum_n c_n(t)H_1\psi_n e^{-\text{i}\omega_n t}.
\end{gather}
If this is multiplied by $\psi_m^*\exp(\text{i}\omega_m t)$, and integrated over the volume one obtains
 \begin{gather}
\text{i}\hbar\frac{dc_m(t)}{dt} = \sum_n c_n(t)\int\psi_m^*H_1\psi_n\, d^3\boldsymbol{r}\,
e^{\text{i}t(\omega_m-\omega_n)},
\end{gather}
since orthonormality makes
\begin{gather}\int\psi_m^*\psi_n\,d^3\mathbf{r} = \delta_{mn},
\end{gather}
which vanishes for $m \neq n$ and equals unity for m=n. With the definitions
\begin{gather}\omega_{mn} = \omega_m - \omega_n \quad\mbox{and}\quad
H_{mn} = \int\psi_m^*H_1\psi_n\,d^3\mathbf{r}
\end{gather}
one can write (E.5) as
 \begin{gather}
\text{i}\hbar\frac{dc_m(t)}{dt}=\sum_n c_n(t)H_{mn}e^{\text{i}\omega_{mn}t}.
\end{gather}
In general, when the perturbation is turned on at t=0, it may be assumed that the system is in state m at t=0, and cm(0)=1, while cn(0)=0for all other states. Furthermore, it is assumed that the scattering out of the initial state is small, so that cm(t)=1 for all time. This assumption neglects the  conservation of particles. Considering these assumptions, one can solve (E.8).
\begin{gather}c_n(t)= -\frac{\text{i}}{\hbar}\int_0^t H_{mn}e^{\text{i}\omega_{m...
...c{H_{mn}}{\hbar\omega_{mn}}\left(1-e^{\text{i}\omega_{mn}t}\right).
\end{gather}
The probability of occupying state n is then
\begin{gather}\vert c_n(t)\vert^2=\frac{4\vert H_{mn}\vert^2t^2}{\hbar^2}\frac{\sin^2(\frac{\omega_{mn}t}{2})}%
{\omega_{mn}^2t^2}.
\end{gather}
For times $t\rightarrow\infty$, which are long enough such that the scattering process has been completed, the function
\begin{gather}\frac{\sin^2\left(\frac{\omega_{mn}t}{2}\right)}%
{\left(\frac{\om...
...\right)}{\left(\frac{\omega_{mn}}{2}\right)^2}\,d\omega_{mn}=2\pi t
\end{gather}
has the property of a $\delta $-function (see Fig. E.1).
  
Figure: The function $\protect\sin^2(\protect\omega_{mn}t/2)/(\protect\omega_{mn}/2)^2$ has the property of a $\protect\delta$-function.
\resizebox{12cm}{!}{\includegraphics{golden_rule.eps}}


\begin{gather}2\pi t\delta(\omega_{mn})=2\pi\hbar t\delta(\hbar\omega_{mn}).
\end{gather}
The transition probability per unit time, the   transmission rate, is then given by the so called Fermi Golden Rule
\begin{gather}\Gamma = \frac{d\vert c_n(t)\vert^2}{dt}=\frac{2\pi}{\hbar}\vert H_{mn}\vert^2\delta(E_m-E_n).
\end{gather}
This means that a scattering process, in our case a tunnel event, only takes place if the energy of the particle is conserved, Em = En.


next up previous index
Next: F Second Order Co Up: Dissertation Christoph Wasshuber Previous: D Integration of Fermi

Christoph Wasshuber