(image) (image) [Previous]

Predictive and Efficient Modeling of Hot Carrier Degradation with Drift-Diffusion Based Carrier Transport Models

Chapter D Bibliography

  • [1]  A. Acovic, G. L. Rosa, and Y.-C. Sun, “A Review of Hot-Carrier Degradation Mechanism in MOSFETs,” Micro. Reliab., vol. 36, no. 7/8, pp. 845–869, 1996.

  • [2]  S. Manzini and A. Gallerano, “Avalanche Injection of Hot Holes in the Gate Oxide of LDMOS,” Solid-State Electron., vol. 44, no. 1, pp. 1325–1330, 2000.

  • [3]  D. Brisbin, A. Strachan, and P. Chaparala, “1-D and 2-D Hot Carrier Layout Optimization of N-LDMOS Transistor Arrays,” in Proc. International Integrated Reliability Workshop (IIRW), 2002, pp. 120–124.

  • [4]  P. Moens, G. van den Bosch, and G. Groeseneken, “Competing Hot Carrier Degradation Mechanisms in Lateral n-type DMOS Transistors,” in Proc. International Reliability Physics Symposium (IRPS), 2003, pp. 214–221.

  • [5]  A. Bravaix and V. Huard, “Hot-Carrier Degradation Issues in Advanced CMOS Nodes,” in Proc. European Symposium on Reliability of Electron Devices Failure Physics and Analysis (ESREF), tutorial, 2010, pp. 1267–1272.

  • [6]  International Technology Roadmap for Semiconductors (ITRS), 2013.

  • [7]  S. Tyaginov, I. Starkov, H. Enichlmair, J. Park, C. Jungemann, and T. Grasser, “Physics-Based Hot-Carrier Degradation Models (invited),” ECS Trans., vol. 35, no. 4, pp. 321–352, 2011.

  • [8]  S. E. Tyaginov and T. Grasser, “Modeling of Hot-Carrier Degradation: Physics and Controversial Issues,” in IEEE International Integrated Reliability Workshop Final Report, 2012, pp. 206–215.

  • [9]  S. Rauch and G. L. Rosa, “The Energy-Driven Paradigm of NMOSFET Hot-Carrier Effects,” IEEE Trans. Dev. Material. Reliab., vol. 5, no. 4, pp. 701–705, 2005.

  • [10]  C. Guerin, V. Huard, and A. Bravaix, “The Energy-Driven Hot-carrier Degradation Modes of nMOSFETs,” IEEE Trans. Dev. Material. Reliab., vol. 7, no. 2, pp. 225–235, 2007.

  • [11]  S. Rauch and G. L. Rosa, “CMOS Hot Carrier: From Physics to End Of Life Projections, and Qualification,” in Proc. International Reliability Physics Symposium (IRPS), tutorial, 2010.

  • [12]  Y. Randriamihaja, V. Huard, X. Federspiel, A. Zaka, P. Palestri, D. Rideau, and A. Bravaix, “Microscopic Scale Characterization and Modeling of Transistor Degradation Under HC Stress,” Microel. Reliab., vol. 52, no. 11, pp. 2513–2520, 2012.

  • [13]  S. Tyaginov, M. Bina, J. Franco, D. Osintsev, O. Triebl, B. Kaczer, and T. Grasser, “Physical Modeling of Hot-Carrier Degradation for Short- and Long-Channel MOSFETs,” in Proc. International Reliability Physics Symposium (IRPS), 2014, pp. XT.16–1–16–8.

  • [14]  M. Bina, S. Tyaginov, J. Franco, Y. Wimmer, D. Osinstev, B. Kaczer, and T. Grasser, “Predictive Hot-Carrier Modeling of N-Channel MOSFETs,” IEEE Trans. Electron Dev., vol. 61, no. 9, pp. 3103–3110, 2014.

  • [15]  S. Tyaginov, M. Bina, J. Franco, Y. Wimmer, D. Osintsev, B. Kaczer, and T. Grasser, “A Predictive Physical Model for Hot-Carrier Degradation in Ultra-Scaled MOSFETs,” in Proc. Simulation of Semiconductor Processes and Devices (SISPAD), 2014, pp. 89–92.

  • [16]  M. Fischetti and S. Laux, “Monte-Carlo Study of Sub-band-gap Impact Ionization in Small Silicon Field-effect Transistors,” in Proc. International Electron Devices Meeting (IEDM), 1995, pp. 305–308.

  • [17]  C. Jungemann and B. Meinerzhagen, Hierarchical Device Simulation. Springer Verlag Wien/New York, 2003.

  • [18]  S.-M. Hong, A. Pham, and C. Jungemann, Deterministic Solvers for the Boltzmann Transport Equation. Springer, 2011.

  • [19]  K. Rupp, M. Bina, Y. Wimmer, A. Jüngel, and T. Grasser, “Cell-Centered Finite Volume Schemes for Semiconductor Device Simulation,” in Proc. International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), 2014, pp. 365–368.

  • [20]  K. Rupp, T. Grasser, and A. Jüngel, “On the Feasibility of Spherical Harmonics Expansions of the Boltzmann Transport Equation for Three-Dimensional Device Geometries,” in Proc. International Electron Devices Meeting (IEDM), 2011, pp. 789–792.

  • [21]  K. Hess, L. F. Register, B. Tuttle, J. Lyding, and I. C. Kizilyalli, “Impact of Nanostructure Research on Conventional Solid-State Electronics: The Giant Isotope Effect in Hydrogen Desorption and CMOS Lifetime,” Phys. E: Low-Dimensional Syst. Nanostruct., vol. 3, no. 1, pp. 1–7, 1998.

  • [22]  O. Penzin, A. Haggag, W. McMahon, E. Lyumkis, and K. Hess, “MOSFET Degradation Kinetics and Its Simulation,” IEEE Trans. Electron Dev., vol. 50, no. 6, pp. 1445–1450, 2003.

  • [23]  S. Rauch and G. L. Rosa, “The Energy Driven Paradigm of NMOSFET Hot Carrier Effects,” in Proc. International Reliability Physics Symposium (IRPS), 2005.

  • [24]  M. Bina, S. Tyaginov, J. Franco, Y. Wimmer, D. Osinstev, B. Kaczer, T. Grasser et al., “Predictive Hot-Carrier Modeling of n-channel MOSFETs,” IEEE Trans. Electron Dev., vol. 61, no. 9, pp. 3103–3110, 2014.

  • [25]  S. Tyaginov, I. Starkov, O. Triebl, J. Cervenka, C. Jungemann, S. Carniello, J. Park, H. Enichlmail, C. Kernstock, E. Seebacher, R. Minixhofer, H. Ceric, and T. Grasser, “Interface Traps Density-of-states as a Vital Component for Hot-carrier Degradation Modeling,” Micro. Rel., vol. 50, pp. 1267–1272, 2010.

  • [26]  Y. Wimmer, S. Tyaginov, F. Rudolf, K. Rupp, M. Bina, H. Enichlmair, J.-M. Park, R. Minixhofer, and T. Grasser, “Physical Modeling of Hot-Carrier Degradation in nLDMOS Transistors,” in Proc. International Integrated Reliability Workshop (IIRW), 2014, pp. 58–62.

  • [27]  S. Tyaginov, M. Bina, J. Franco, Y. Wimmer, B. Kaczer, and T. Grasser, “On the Importance of Electron-Electron Scattering for Hot-Carrier Degradation,” Japanese Journal of Applied Physics, vol. 54, no. 4S, p. 04DC18, 2015.

  • [28]  T. Grasser, T.-W. Tang, H. Kosina, and S. Selberherr, “A Review of Hydrodynamic and Energy-Transport Models for Semiconductor Device Simulation,” Proceeding of the IEEE, vol. 91, no. 2, pp. 251–273, 2003.

  • [29]  S. Tyaginov, I. Starkov, C. Jungemann, H. Enichlmair, J. Park, and T. Grasser, “Impact of the Carrier Distribution Function on Hot-Carrier Degradation Modeling,” in Proc. European Solid-State Device Research Conference (ESSDERC), 2011, pp. 151–154.

  • [30]  S. Reggiani, S. Poli, M. Denison, E. Gnani, A. Gnudi, G. Baccarani, S. Pendharkar, and R. Wise, “Physics-Based Analytical Model for HCS Degradation in STI-LDMOS Transistors,” IEEE Trans. Electron Dev., vol. 58, pp. 3072–3080, 2011.

  • [31]  S. Reggiani, G. Barone, E. Gnani, A. Gnudi, G. Baccarani, S. Poli, R. Wise, M.-Y. Chuang, W. Tian, S. Pendharkar, and M. Denison, “Characterization and Modeling of Electrical Stress Degradation in STI-based Integrated Power Devices,” Solid-State Electron., vol. 102, no. 12, pp. 25–41, 2014.

  • [32]  H. G. Reik and H. Risken, “Distribution Functions for Hot Electrons in Many-Valley Semiconductors,” Phys. Rev., vol. 124, pp. 777–784, 1961.

  • [33]  D. Cassi and B. Ricco, “An Analytical Model of the Energy Distribution of Hot Electrons,” IEEE Trans. Electron Dev., vol. 37, no. 6, pp. 1514–1521, 1990.

  • [34]  K. Hasnat, C.-F. Yeap, S. Jallepalli, S. A. Hareland, W.-K. Shih, V. M. Agostinelli, A. F. Tasch, and C. M. Maziar, “Thermionic Emission Model of Electron Gate Current in Submicron NMOSFETs,” IEEE Trans. Electron Dev., vol. 44, no. 1, pp. 129–138, 1997.

  • [35]  S. Reggiani, G. Barone, S. Poli, E. Gnani, A. Gnudi, G. Baccarani, M.-Y. Chuang, W. Tian, and R. Wise, “TCAD Simulation of Hot-Carrier and Thermal Degradation in STI-LDMOS Transistors,” IEEE Trans. Electron Dev., vol. 60, no. 2, pp. 691–698, 2013.

  • [36]  S. Reggiani, G. Barone, E. Gnani, A. Gnudi, G. Baccarani, S. Poli, M.-Y. Chuang, W. Tian, and R. Wise, “TCAD Predictions of Linear and Saturation HCS Degradation in STI-Based LDMOS Transistors Stressed in the Impact-Ionization Regime,” in Proc. ISPSD, 2013, pp. 375–378.

  • [37]  A. Tallarico, S. Reggiani, P. Magnone, G. Croce, R. Depetro, P. Gattari, E. Sangiorgi, and C. Fiegna, “Investigation of the Hot Carrier Degradation in Power LDMOS Transistors with Customized Thick Oxide,” Microelectronics Reliability, vol. 76-77, pp. 475–479, 2017. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S002627141730327X

  • [38]  A. N. Tallarico, S. Reggiani, R. Depetro, A. M. Torti, G. Croce, E. Sangiorgi, and C. Fiegna, “Hot-Carrier Degradation in Power LDMOS: Selective LOCOS- Versus STI-Based Architecture,” IEEE Journal of the Electron Devices Society, vol. 6, no. 1, pp. 219–226, 2018.

  • [39]  D. Schroder, “Negative Bias Temperature Instability: What Do We Understand?” Microel. Reliab., vol. 47, no. 6, pp. 841–852, 2007.

  • [40]  T. Grasser, W. Gös, V. Sverdlov, and B. Kaczer, “The Universality of NBTI Relaxation and its Implications for Modeling and Characterization,” in Proc. International Reliability Physics Symposium (IRPS), 2007, pp. 268–280.

  • [41]  T. Grasser, B. Kaczer, W. Gös, H. Reisinger, T. Aichinger, P. Hehenberger, P.-J. Wagner, J. Franco, M. Toledano-Luque, and M. Nelhiebel, “The Paradigm Shift in Understanding the Bias Temperature Instability: From Reaction-Diffusion to Switching Oxide Traps,” IEEE Trans Electron Dev., vol. 58, no. 11, pp. 3652–3666, 2011.

  • [42]  C. Hu and Q. Lu, “A Unified Gate Oxide Reliability Model,” in IEEE International Reliability Physics Symposium Proceedings, 1999, pp. 47–51.

  • [43]  J. Suñé and D. Jimenez and E. Miranda, “Breakdown Modea and Breakdown Statistics of Ultrathin SiO2 Gate Oxides,” International Journal of High Speed Electronics and Systems, vol. 11, no. 03, pp. 789–848, 2001.

  • [44]  S. Tyaginov, I. Starkov, H. Enichlmair, C. Jungemann, J. Park, E. Seebacher, R. Orio, H. Ceric, and T. Grasser, “An Analytical Approach for Physical Modeling of Hot-Carrier Induced Degradation,” Microelectronics Reliability, vol. 51, no. 9, pp. 1525–1529, 2011.

  • [45]  P. Sharma, S. Tyaginov, Y. Wimmer, F. Rudolf, K. Rupp, H. Enichlmair, J.-M. Park, H. Ceric, and T. Grasser, “Comparison of Analytic Distribution Function Models for Hot-Carrier Degradation Modeling in nLDMOSFETs,” Microelectronics Reliability, vol. 55, no. 9, pp. 1427 – 1432, 2015, proceedings of the 26th European Symposium on Reliability of Electron Devices, Failure Physics and AnalysisSI:Proceedings of {ESREF} 2015.

  • [46]  G. Rzepa, W. Gös, G. Rott, K. Rott, M. Karner, C. Kernstock, B. Kaczer, H. Reisinger, and T. Grasser, “Physical Modeling of NBTI: From Individual Defects to Devices,” in Proc. International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), 2014, pp. 81–84.

  • [47]  P. Heremans, P. Bellens, G. Groeseneken, and H. Maes, “Consistent Model for the Hot Carrier Degradation in N-Channel and P-Channel MOSFETs,” IEEE Trans. Electron Dev., vol. 35, no. 12, pp. 2194–2209, 1988.

  • [48]  G. Rzepa, M. Waltl, W. Gös, B. Kaczer, J. Franco, T. Chiarella, N. Horiguchi, and T. Grasser, “Complete Extraction of Defect Bands Responsible for Instabilities in n and pFinFETs,” in 2016 Symposium on VLSI Technology Digest of Technical Papers, 2016, pp. 208–209.

  • [49]  R. Samnakay, A. A. Balandin, and P. Srinivasan, “Reliability Characterization of SiON and MGHK MOSFETs Using Flicker Noise and its Correlation with the Bias Temperature Instability,” Solid-State Electronics, vol. 135, pp. 37–42, 2017.

  • [50]  S. Pae, M. Agostinelli, M. Brazier, R. Chau, G. Dewey, T. Ghani, M. Hattendorf, J. Hicks, J. Kavalieros, K. Kuhn, M. Kuhn, J. Maiz, M. Metz, K. Mistry, C. Prasad, S. Ramey, A. Roskowski, J. Sandford, C. Thomas, J. Thomas, C. Wiegand, and J. Wiedemer, “BTI Reliability of 45 nm High-K + Metal-Gate Process Technology,” in 2008 IEEE International Reliability Physics Symposium, April 2008, pp. 352–357.

  • [51]  G. Rzepa, M. Waltl, W. Goes, B. Kaczer, and T. Grasser, “Microscopic Oxide Defects Causing BTI, RTN, and SILC on High-k FinFETs,” in 2015 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), Sept 2015, pp. 144–147.

  • [52]  Y. Wimmer, A.-M. El-Sayed, W. Gös, T. Grasser, and A. L. Shluger, “Role of Hydrogen in Volatile Behaviour of Defects in SiO2-based Electronic Devices,” Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 472, no. 2190, 2016.

  • [53]  W. Goes, Y. Wimmer, A.-M. El-Sayed, G. Rzepa, M. Jech, A. Shluger, and T. Grasser, “Identification of Oxide Defects in Semiconductor Devices: A Systematic Approach Linking DFT to Rate Equations and Experimental Evidence,” Microelectronics Reliability, vol. 87, pp. 286–320, 2018.

  • [54]  I. Starkov, S. Tyaginov, H. Enichlmair, J. Cervenka, C. Jungemann, S. Carniello, J. Park, H. Ceric, and T. Grasser, “Hot-Carrier Degradation Caused Interface State Profile - Simulations vs. Experiment,” Journal of Vacuum Science and Technology - B, vol. 29, no. 1, pp. 01AB09–1–01AB09–8, 2011.

  • [55]  V. Huard, M. Denais, and C. Parthasarathy, “NBTI Degradation: From Physical Mechanisms to Modelling,” Microel. Reliab., vol. 46, no. 1, pp. 1–23, 2006.

  • [56]  T. Grasser, “Stochastic Charge Trapping in Oxides: From Random Telegraph Noise to Bias Temperature Instabilities,” Microelectronics Reliability (invited), vol. 52, no. 1, pp. 39–70.

  • [57]  T. Grasser, T. Aichinger, G. Pobegen, H. Reisinger, P.-J. Wagner, J. Franco, M. Nelhiebel, and B. Kaczer, “The ’Permanent’ Component of NBTI: Composition and Annealing,” in Proc. International Reliability Physics Symposium (IRPS), 2011, pp. 1–9.

  • [58]  S. Mahapatra, M. A. Alam, P. B. Kumar, T. R. Dalei, D. Varghese, and D. Saha, “Negative Bias Temperature Instability in CMOS Devices,” Microelectron. Eng., vol. 80, pp. 114–121, 2005.

  • [59]  M. A. Alam and S. Mahapatra, “A Comprehensive Model of PMOS NBTI Degradation,” Microelectron. Reliab., vol. 45, no. 1, pp. 71–81, 2005.

  • [60]  K. O. Jeppson and C. M. Svensson, “Negative Bias Stress of MOS Devices at High Electric Fields and Degradation of MNOS Devices,” J. Appl. Phys., vol. 48, no. 5, pp. 2004–2014, 1977.

  • [61]  S. Ogawa and N. Shiono, “Generalized Diffusion-Reaction Model for the Low-Field Charge Build up Instability at the Si/SiO2 Interface,” Phys. Rev. B, vol. 51, no. 7, pp. 4218–4230, 1995.

  • [62]  T. Grasser, B. Kaczer, W. Goes, T. Aichinger, P. Hehenberger, and M. Nelhiebel, “Understanding Negative Bias Temperature Instability in the Context of Hole Trapping,” Microelectronic Engineering, vol. 86, no. 7–9, pp. 1876–1882, 2009.

  • [63]  D. Ang, Z. Teo, T. Ho, and C. Ng, “Reassessing the Mechanisms of Negative-Bias Temperature Instability by Repetitive Stress/Relaxation Experiments,” IEEE Trans.Dev.Mat.Rel., vol. 11, no. 1, pp. 19–34, 2011.

  • [64]  T. Grasser, K. Rott, H. Reisinger, P.-J. Wagner, W. Gös, F. Schanovsky, M. Waltl, M. Toledano-Luque, and B. Kaczer, “Advanced Characterization of Oxide Traps: The Dynamic Time-Dependent Defect Spectroscopy,” in Proc. International Reliability Physics Symposium (IRPS), 2013, pp. 1–6.

  • [65]  M. Houssa, M. Aoulaiche, S. D. Gendt, G. Groeseneken, M. M. Heyns, and A. Stesmans, “Reaction-Dispersive Proton Transport Model for Negative Bias Temperature Instabilities,” Applied Physics Letters, vol. 86, no. 9, p. 093506, 2005.

  • [66]  T.Grasser, W. Gös, and B. Kaczer, “Dispersive Transport and Negative Bias Temperature Instability: Boundary Conditions, Initial Conditions, and Transport Models,” IEEE Trans Dev. Material. Reliab., vol. 8, no. 1, pp. 79–97, 2008.

  • [67]  T. Grasser, B. Kaczer, W. Gös, T. Aichinger, P. Hehenberger, and M. Nelhiebel, “A Two-Stage Model for Negative Bias Temperature Instability,” in Proc. International Reliability Physics Symposium (IRPS), 2009, pp. 33–34.

  • [68]  T. Grasser, B. Kaczer, W. Goes, H. Reisinger, T. Aichinger, P. Hehenberger, P.-J. Wagner, F. Schanowsky, J. Franco, P. Roussel, and M. Nelhiebel, “Recent Advances in Understanding the Bias Temperature Instability,” in Proc. International Electron Devices Meeting (IEDM), 2010, pp. 82–85.

  • [69]  T. Grasser, P.-J. Wagner, H. Reisinger, T. Aichinger, G. Pobegen, M. Nelhiebel, and B. Kaczer, “Analytic Modeling of the Bias Temperature Instability Using Capture/Emission Time Maps,” in Proc. International Reliability Physics Symposium (IRPS), 2011, pp. 1–4.

  • [70]  P. Wagner, T. Aichinger, T. Grasser, M. Nelhiebel, and L. Vandamme, “Possible Correlation Between Flicker Noise and Bias Temperature Stress,” in Proc. Int. Conf. on Noise and Fluctuations, 2009, pp. 621–624.

  • [71]  M. Houssa, M. Aoulaiche, S. D. Gendt, G. Groeseneken, M. M. Heyns, and A. Stesmans, “Modeling of Hot-Carrier Degradation Based on Thorough Carrier Transport Treatment,” Facta universitatis - series: Electronics and Energetics, vol. 27, no. 4, pp. 479–508, 2005.

  • [72]  T. Grasser, Hot Carrier Degradation in Semiconductor Devices. Springer International Publishing, 2014.

  • [73]  S. Cristoloveanu, H. Haddara, and N. Revil, “Defect Localization Induced by Hot Carrier Injection in Short-Channel MOSFETs: Concept, Modeling and Characterization,” Microel. Reliab., vol. 33, no. 9, pp. 1365–1385, 1993.

  • [74]  Y. Liu, “Study of Oxide Breakdown, Hot Carrier and NBTI Effect on MOS Device and Circuit Reliability,” Ph.D. dissertation, University of Central Florida, Orlando, Florida, 2005.

  • [75]  G. Groeseneken, R. Bellens, and G. V. den Bosch, “Hot-carrier Degradation in Submicrometre MOSFETs: From Uniform Injection Towards the Real Operating Conditions,” Semicond. Sci. Technol., vol. 10, pp. 1208–1220, 1995.

  • [76]  R. Woltjer and G. Paulzen, “Universal Description of Hot-Carrier-Induced Interface States in NMOSFETs,” in Proc. International Electron Devices Meeting (IEDM), 1992, pp. 535–538.

  • [77]  R. Woltjer, G. Paulzen, H. Pomp, H. Lifka, and P. Woerlee, “Three Hot-Carrier Degradation Mechanisms,” IEEE Trans. Electron Dev., vol. 42, no. 1, pp. 109–115, 1995.

  • [78]  G. A. Rott, K. Rott, H. Reisinger, W. Gustin, and T. Grasser, “Mixture of Negative Bias Temperature Instability and Hot-Carrier Driven Threshold Voltage Degradation of 130 nm Technology P-Channel Transistors,” Microelectronics Reliability, vol. 54, no. 9–10, pp. 2310–2314, 2014.

  • [79]  H. Momose, S.-I. Nakamura, T. Ohguro, T. Yoshitomi, E. Morifuji, T. Morimoto, Y. Katsumata, and H. Iwai, “A Study of Hot-Carrier Degradation in n- and p-MOSFETs with Ultra-Thin Gate Oxides in the Direct-Tunneling Regime,” IEDM Technical Digest, pp. 453–456, 1997.

  • [80]  S. Mahapatra, D. Parikh, V. Rao, C. Viswanathan, and J. Vasi, “A Comprehensive Study of Hot-Carrier Induced Interface and Oxide Trap Distribution in MOSFET’s Using a Novel Charge Pumping Technique,” IEEE Trans. Electron Dev., vol. 47, no. 1, pp. 171–177, 2000.

  • [81]  I. Polishchuk, Y.-C. Yeo, Q. Lu, T.-J. King, and C. Hu, “Hot-Carrier Reliability of p-MOSFET With Ultra-Thin Silicon Nitride Gate Dielectric,” in Proc. International Reliability Physics Symposium (IRPS), 2001, pp. 425–430.

  • [82]  A. Bravaix, D. Goguenheim, N. Revil, E. Vincent, M. Varrot, and P. Mortini, “Analysis of High Temperatures Effects on Performance and Hot-Carrier Degradation in DC/AC Stressed 0.35 \( \mathrm {\mu m} \) n-MOSFETs,” Microel. Reliab., vol. 39, no. 1, pp. 35–44, 1999.

  • [83]  H. Enichlmair, S. Carniello, J. Park, and R. Minixhofer, “Analysis of Hot Carrier Effects in a 0.35 \( \mathrm {\mu m} \) High Voltage n-channel LDMOS,” Microel. Reliab., vol. 47, no. 9-11, pp. 1439–1443, 2007.

  • [84]  P. Moens, J. Mertens, F. Bauwens, P. Joris, W. D. Ceuninck, and M. Tack, “A Comprehensive Model for Hot Carrier Degradation in LDMOS Transistors,” in Proc. International Reliability Physics Symposium (IRPS), 2007, pp. 492–497.

  • [85]  S. Rauch, F. Guarin, and G. La Rosa, “Impact of E-E Scattering to the Hot Carrier Degradation of Deep Submicron NMOSFETs,” IEEE Electron Dev. Lett., vol. 19, no. 12, pp. 463–465, 1998.

  • [86]  S. Rauch, G. La Rosa, and F. Guarin, “Role of E-E Scattering in the Enhancement of Channel Hot Carrier Degradation of Deep-Submicron NMOSFETs at high \( V_\mathrm {gs} \) Conditions,” IEEE Trans. Dev. Material. Reliab., vol. 1, no. 2, pp. 113–119, 2001.

  • [87]  Y. Randriamihaja, X. Federspiel, V. Huard, A. Bravaix, and P. Palestri, “New Hot Carrier Degradation Modeling Reconsidering the Role of EES in Ultra Short n-channel MOSFETs,” in Proc. International Reliability Physics Symposium (IRPS), 2013, pp. 1–5.

  • [88]  S. Tyaginov, M. Jech, J. Franco, P. Sharma, B. Kaczer, and T. Grasser, “Understanding and Modeling the Temperature Behavior of Hot-Carrier Degradation in SiON nMOSFETs,” IEEE Electron Device Letters, vol. 37, no. 1, pp. 84–87, 2016.

  • [89]  S. W. Mittl and F. Guarin, “Self-Heating and its Implications on Hot Carrier Reliability Evaluations,” 2015 IEEE International Reliability Physics Symposium, pp. 4A.4.1–4A.4.6, 2015.

  • [90]  C. Prasad, S. Ramey, and L. Jiang, “Self-Heating In Advanced CMOS Technologies,” in 2017 IEEE International Reliability Physics Symposium (IRPS), April 2017, pp. 6A–4.1–6A–4.7.

  • [91]  B. Ullmann, M. Jech, S. Tyaginov, M. Waltl, Y. Illarionov, A. Grill, K. Puschkarsky, H. Reisinger, and T. Grasser, “The Impact of Mixed Negative Bias Temperature Instability and Hot Carrier Stress on Single Oxide Defects,” in 2017 IEEE International Reliability Physics Symposium (IRPS), April 2017, pp. XT–10.1–XT–10.6.

  • [92]  J. W. McPherson, Jinyoung Kim, A. Shanware, H. Mogul, and J. Rodriguez, “Trends in the Ultimate Breakdown Strength of High Dielectric-Constant Materials,” IEEE Transactions on Electron Devices, vol. 50, no. 8, pp. 1771–1778, 2003.

  • [93]  J. McPherson, “Time Dependent Dielectric Breakdown Physics - Models Revisited,” Microelectronics Reliability, vol. 52, pp. 1753–1760, 2012.

  • [94]  J. Sune, E. Wu, and S. Tous, “A Physics-Based Deconstruction of the Percolation Model of Oxide Breakdown,” Microel. Engineering, vol. 84, no. 9-10, pp. 1917–1920, 2007.

  • [95]  A. Ghetti, Predictive Simulation of Semiconductor Processing: Status and Challenges. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, ch. Gate Oxide Reliability: Physical and Computational Models, pp. 201–258.

  • [96]  J. Suñé, I. Placencia, N. Barniol, E. Farrés, F. Martín, and X. Aymerich, “On the Breakdown Statistics of Very Thin SiO2 Films,” Thin Solid Films, vol. 185, no. 2, pp. 347–362, 1990.

  • [97]  J. W. McPherson and H. C. Mogul, “Underlying Physics of the Thermochemical E Model in Describing Low-field Time-dependent Dielectric Breakdown in SiO2 Thin Films,” Journal of Applied Physics, vol. 84, no. 3, pp. 1513–1523, 1998.

  • [98]  E. M. Vogel, M. D. Edelstein, and J. S. Suehle, “Defect Generation and Breakdown of Ultrathin Silicon Dioxide Induced by Substrate Hot-Hole Injection,” Journal of Applied Physics, vol. 90, no. 5, pp. 2338–2346, 2001.

  • [99]  A. Padovani, D. Z. Gao, A. L. Shluger, and L. Larcher, “A Microscopic Mechanism of Dielectric Breakdown in SiO2 Films: An Insight From Multi-Scale Modeling,” Journal of Applied Physics, vol. 121, no. 15, 2017.

  • [100]  https://engineering.purdue.edu/ ee650/downloads/ghetti-review-of-TDDB.pdf.

  • [101]  I. C. Chen, S. Holland, K. K. Young, C. Chang, and C. Hu, “Substrate Hole Current and Oxide Breakdown,” Applied Physics Letters, vol. 49, no. 11, pp. 669–671, 1986.

  • [102]  K. F. Schuegraf, F. Klaus, and C. Hu, “Metal Oxide Semiconductor Field Effect Transistor Substrate Current During Fowler Nordheim Tunneling Stress and Silicon Dioxide Reliability,” Journal of Applied Physics, vol. 76, no. 6, pp. 3695–3700, 1994.

  • [103]  S. Sze and K. Ng, Physics of semiconductor devices, ser. Wiley-Interscience publication. Wiley-Interscience, 2007.

  • [104]  K. F. Schuegraf and Chenming Hu, “Effects of Temperature and Defects on Breakdown Lifetime of Thin SiO/sub 2/ at Very Low Voltages,” in Reliability Physics Symposium, 1994. 32nd Annual Proceedings., IEEE International, 1994, pp. 126–135.

  • [105]  E. Vogel, D. Heh, and J.Bernstein, “Interaction Between Low-energy Electrons and Defects Created by Hot Holes in Ultrathin Silicon Dioxide,” Applied Physics Letters, vol. 80, pp. 3343–3345, 05 2002.

  • [106]  P. E. Nicollian, M. Rodder, D. T. Grider, P. Chen, R. M. Wallace, and S. V. Hattangady, “Low Voltage Stress-Induced-Leakage-Current in Ultrathin Gate Oxides,” in IEEE International Reliability Physics Symposium Proceedings (IRPS), 1999, pp. 400–404.

  • [107]  D. J. DiMaria, E. Cartier, and D. Arnold, “Impact Ionization, Trap Creation, Degradation, and Breakdown in Silicon Dioxide Films on Silicon,” Journal of Applied Physics, vol. 73, no. 7, pp. 3367–3384, 1993.

  • [108]  E. Y. Wu, A. Vayshenker, E. Nowak, J. Sune, R. P. Vollertsen, W. Lai, and D. Harmon, “Experimental Evidence of TBD Power-law for Voltage Dependence of Oxide Breakdown in Ultrathin Gate Oxides,” IEEE Transactions on Electron Devices, vol. 49, no. 12, pp. 2244–2253, 2002.

  • [109]  F. Chen, O. Bravo, K. Chanda, P. McLaughlin, T. Sullivan, J. Gill, J. Lloyd, R. Kontra, and J. Aitken, “A Comprehensive Study of Low-k SiCOH TDDB Phenomena and Its Reliability Lifetime Model Development,” in Reliability Physics Symposium Proceedings, 2006. 44th Annual., IEEE International, 2006, pp. 46–53.

  • [110]  J. R. Lloyd, “On the Physical Interpretation of the Impact Damage Model in TDDB of Low-k Dielectrics,” in IEEE International Reliability Physics Symposium (IRPS), 2010, pp. 943–946.

  • [111]  J. W. McPherson, R. B. Khamankar, and A. Shanware, “Complementary Model for Intrinsic Time-dependent Dielectric Breakdown in SiO2 Dielectrics,” Journal of Applied Physics, vol. 88, no. 9, pp. 5351–5359, 2000.

  • [112]  W. L. Warren, E. H. Poindexter, M. Offenberg, and W. M. Warmuth, “Paramagnetic Point Defects in Amorphous Silicon Dioxide and Amorphous Silicon Nitride Thin Films,” J. Electrochem. Soc., vol. 139, no. 3, pp. 872–880, 1992.

  • [113]  A. Stirling and A. Pasquarello, “First-principles modeling of paramagnetic si dangling-bond defects in amorphous \( {\mathrm {sio}}_{2} \),” Phys. Rev. B, vol. 66, p. 245201, Dec 2002.

  • [114]  A. Stesmans, “Passivation of P \( _\mathrm {b0} \) and P \( _\mathrm {b1} \) Interface Defects in Thermal (100) Si/SiO \( _2 \) with Molecular Hydrogen,” Appl. Phys. Lett., vol. 68, no. 15, pp. 2076–2078, 1996.

  • [115]  D. Schroder and J. Babcock, “Negative Bias Temperature Instability: Road to Cross in Deep Submicron Silicon Semiconductor Manufacturing,” Journ. Appl. Physics, vol. 94, no. 1, pp. 1–18, 2003.

  • [116]  P. V. Gray and D. M. Brown, “DENSITY OF SiO2-Si INTERFACE STATES,” Applied Physics Letters, vol. 8, no. 2, pp. 31–33, 1966.

  • [117]  D. Schroder, Semiconductor Material and Device Characterization. 3rd Ed. J. Wiley, New York, 2006.

  • [118]  G. Groeseneken, H. Maes, N. Beltran, and R. D. Keersmaecker, “A Reliable Approach to Charge-Pumping Measurements in MOS Transistors,” IEEE Transactions on Electron Devices, vol. 31, no. 1, pp. 42–53, 1984.

  • [119]  M. Tsuchiaki, H. Hara, T. Morimoto, H. Iwai, and NewAuthor5, “A New Charge Pumping Method for Detemining the Spatial Distribution of Hot-carrier-induced Fixed Charge in p-MOSFET’s,” IEEE Trans Electron Dev., vol. 40, no. 10, pp. 1768–1799, 1993.

  • [120]  P. Chattopadhyay, “High Frequency Capacitance-voltage Characteristics of MOS Tunnel Diodes in Presence of Interface States and Fixed Oxide Charges,” Solid-State Electron., vol. 36, no. 11, pp. 1641–1644, 1993.

  • [121]  S. C. Witczak, J. S. Suehle, and M. Gaitan, “An Experimental Comparison of Measurement Techniques to Extract Si-SiO2 Interface Trap Density,” Solid-State Electron., vol. 35, no. 3, pp. 345–355, 1992.

  • [122]  I. Starkov, H. Enichlmair, S. Tyaginov, and T. Grasser, “Charge-Pumping Extraction Techniques for Hot-Carrier Induced Interface and Oxide Trap Spatial Distributions in MOSFETs,” in Proc. International Symposium on the Physical & Failure Analysis of Integrated Circuits (IPFA), 2012, pp. 1–6.

  • [123]  P. Heremans, J. Witters, G. Groeseneken, and H. Maes, “Analysis of the Charge Pumping Technique and its Application for the Evaluation of the MOSFET Degradation,” IEEE Trans. Electron Dev., vol. 36, p. 1318, 1989.

  • [124]  MINIMOS-NT Device and Circuit Simulator, Institute for Microelectronic, TU Wien.

  • [125]  http://www.globaltcad.com/en/products/minimos-nt.html.

  • [126]  W. Hill and C. Coleman, “A Single-Frequency Approximation for Interface-State Density Determination,” Solid-State Electronics, vol. 23, no. 9, pp. 987–993, 1980.

  • [127]  R. Engel-Herbert, Y. Hwang, and S. Stemmer, “Comparison of Methods to Quantify Interface Trap Densities at Dielectric/III-V Semiconductor Interfaces,” Journ. Appl. Phys., vol. 108, no. 12, pp. 124 101–1–124 101–15, 2010.

  • [128]  E. H. Nicollian and J. R. Brews, MOS (metal oxide semiconductor) physics and technology. New York: Wiley, 1982.

  • [129]  M. Alexe, “Measurement of Interface Trap States in Metal Ferroelectric Silicon Heterostructures,” Applied Physics Letters, vol. 72, no. 18, pp. 2283–2285, 1998.

  • [130]  R. Engel-Herbert, Y. Hwang, and S. Stemmer, “Comparison of methods to quantify interface trap densities at dielectric/iii-v semiconductor interfaces,” Journal of Applied Physics, vol. 108, no. 12, p. 124101, 2010.

  • [131]  S. Ramey, Y. Lu, I. Meric, S. Mudanai, S. Novak, C. Prasad, and J. Hicks, “Aging Model Challenges in Deeply Scaled Tri-gate Technologies,” in 2015 IEEE International Integrated Reliability Workshop (IIRW), 2015, pp. 56–62.

  • [132]  C. Hu, S. Tam, F. Hsu, P.-K. Ko, T.-Y. Chan, and K. Terrill, “Hot-electron-induced MOSFET Degradation Model, Monitor and Improvement,” IEEE Trans. Electron Dev., vol. 48, no. 4, pp. 375–385, 1985.

  • [133]  E. Takeda, “Hot-Carrier Effects in Submicrometer MOS VLSIs,” IEEE Proc., vol. 131, no. 5, pp. 153–162, 1984.

  • [134]  A. Bravaix, C. Guerin, V. Huard, D. Roy, J. Roux, and E. Vincent, “Hot-carrier Acceleration Factors for Low Power Management in DC-AC Stressed 40nm NMOS Node at High Temperature,” in Proc. International Reliability Physics Symposium (IRPS), 2009, pp. 531–546.

  • [135]  K. Hess, A. Haggag, W. McMahon, K. Cheng, J. Lee, and J. Lyding, “The Physics of Determining Chip Reliability,” Circuits and Devices Mag., vol. 17, no. 3, pp. 33–38, 2001.

  • [136]  A. Haggag, W. McMahon, K. Hess, K. Cheng, J. Lee, and J. Lyding, “High-performance Chip Reliability from Short-time-tests. Statistical Models for Optical Interconnect and HCI/TDDB/NBTI Deep-Submicron Transistor Failures,” in Proc. International Reliability Physics Symposium (IRPS), 2001, pp. 271–279.

  • [137]  A. Bravaix and V. Huard, “Hot-carrier Degradation Issues in Advanced CMOS Nodes,” in Proc. ESREF, Tutorial, 2010, pp. 1267–1272.

  • [138]  T. Mizuno, A. Toriumi, M. Iwase, M. Takanashi, H. Niiyama, M. Fukmoto, and M. Yoshimi, “Hot-carrier Effects in 0.1 \( \mathrm {\mu m} \) Gate Length CMOS Devices,” in Proc. International Electron Devices Meeting (IEDM), 1992, pp. 695–698.

  • [139]  A. Bravaix, C. Guerin, V. Huard, D. Roy, J.-M. Roux, and E. Vincent, “Hot-Carrier Acceleration Factors for Low Power Management in DC-AC Stressed 40 nm NMOS Node at High Temperature,” in Proc. International Reliability Physics Symposium (IRPS), 2009, pp. 531–546.

  • [140]  C. Guerin, V. Huard, and A. Bravaix, “General Framework about Defect Creation at the Si/SiO2 Interface,” Journ. Appl. Phys., vol. 105, 2009.

  • [141]  S. Tyaginov, I. Starkov, O. Triebl, J. Cervenka, C. Jungemann, S. Carniello, J. Park, H. Enichlmair, M. Karner, C. Kernstock, E. Seebacher, R. Minixhofer, H. Ceric, and T. Grasser, “Hot-Carrier Degradation Modeling Using Full-Band Monte-Carlo Simulations,” in Proc. 17th IEEE IPFA, 2010.

  • [142]  D. Brisbin, P. Lindorfer, and P. Chaparala, “Substrate Current Independent Hot Carrier Degradation in NLDMOS Devices,” in Proc. International Reliability Physics Symposium (IRPS), 2006, pp. 329–333.

  • [143]  V. Reddy, “An introduction to CMOS Semiconductor Reliability,” in Proc. International Reliability Physics Symposium (IRPS), tutorial, 2004.

  • [144]  R. Woltjer, A. Hamada, and E. Takeda, “PMOSFET Hot Carrier Damage: Oxide Charge and Interface States,” Semicond Sci. Technol., vol. 7, pp. pp. B581–B584, 1992.

  • [145]  E. Li, E. Rosenbaum, J. Tao, G.-F. Yeap, M. Lin, and P. Fang, “Hot-carrier Effects in nMOSFETs in 0.1 \( \mathrm {\mu m} \) CMOS Technology,” in Proc. International Reliability Physics Symposium (IRPS), 1999, pp. 253–258.

  • [146]  A. Bravaix, D. Goguenheim, N. Revil, and E. Vincent, “Hole Injection Enhanced Hot-Carrier Degradation in PMOSFETs Used for Systems on Chip Applications with 6.5-2 nm Thick Gate Oxides,” Microel. Reliab., vol. 44, no. 1, pp. 65–77, 2004.

  • [147]  P. Sharma, S. Tyaginov, Y. Wimmer, F. Rudolf, K. Rupp, M. Bina, H. Enichlmair, J.-M. Park, R. Minixhofer, H. Ceric, and T. Grasser, “Modeling of Hot-Carrier Degradation in nLDMOS Devices: Different Approaches to the Solution of the Boltzmann Transport Equation,” IEEE Trans. Electron Dev., vol. 62, no. 6, pp. 1–8, 2015.

  • [148]  K. Lee, C. Kang, O. Yoo, R. Choi, B. Lee, J. Lee, H.-D. Lee, and Y.-H. Jeong, “PBTI-Associated High-Temperature Hot Carrier Degradation of nMOSFETs With Metal-Gate/High-k Dielectrics,” IEEE Electron Dev. Lett., vol. 29, no. 4, pp. 389–391, Apr. 2008.

  • [149]  E. Amat, T. Kauerauf, R. Degraeve, R. Rodriguez, M. Nafria, X. Aymerich, and G. Groeseneken, “Channel Hot-Carrier Degradation in pMOS and nMOS Short Channel Transistors with High-K Dielectric Stack,” Microel. Engineering, vol. 87, no. 1, pp. 47–50, 2010.

  • [150]  C. Hu, “Lucky Electron Model for Channel Hot Electron Emission,” in Proc. International Electron Devices Meeting (IEDM), 1979, pp. 22–25.

  • [151]  E. Takeda and N. Suzuki, “An Empirical Model for Device Degradation due to Hot-Carrier Injection,” IEEE Electron Dev. Lett., vol. 4, no. 5, pp. 111–113, 1983.

  • [152]  K. Mistry and B. Doyle, “AC versus DC Hot-carrier Degradation in N-channel MOSFET’s,” IEEE Trans. Electron Dev., vol. 40, no. 1, pp. 96–104, 1993.

  • [153]  R. Dreesen, K. Croes, J. Manca, W. D. Ceunick, L. D. Schepper, A. Pergoot, and G. Groeseneken, “A New Degradation Model and Lifetime Extrapolation Technique for Lightly Doped Drain nMOSFETs under Hot-Carrier Degradation,” Microel. Reliab., vol. 41, pp. 437–443, 2001.

  • [154]  J.-S. Goo, Y.-G. Kim, H. Lee, H.-Y. Kwon, and H. Shin, “An Analytical Model for Hot-carrier-induced Degradation of Deep-submicron n-channel LDD MOSFETs,” Solid-State Electron., vol. 38, no. 6, pp. 1191–1196, 1995.

  • [155]  R. Dreesen, K. Croes, J. Manca, W. D. Ceunick, L. D. Schepper, A. Pergoot, and G. Groeseneken, “Modeling Hot-carrier Degradation of LDD NMOSFRTs by Using a High Resolution Measurement Technique,” Microel. Reliab., vol. 39, pp. 785–790, 1999.

  • [156]  K. Mistry and B. Doyle, “A Model for AC Hot-Carrier Degradation in n-channel MOSFET’s,” IEEE Electron Dev. Lett., vol. 12, no. 9, pp. 492–494, 1991.

  • [157]  W. McMahon, K. Matsuda, J. Lee, K. Hess, and J. Lyding, “The Effects of a Multiple Carrier Model of Interface States Generation of Lifetime Extraction for MOSFETs,” in Proc. Int. Conf. Mod. Simul. Microsys., vol. 1, 2002, pp. 576–579.

  • [158]  J. Lyding, K. Hess, G. Abeln, D. Thompson, J. Moore, M. Hersam, E. Foley, J. Lee, S. Hwang, H. Choi, P. Avouris, and I. Kizialli, “Ultrahigh Vacuum-scanning Tunneling Microscopy Nanofabrication and Hydrogen/Deuterium Desorption from Silicon Surfaces: Implications for Complementary Metal Oxide Semiconductor Technology,” Appl. Surf. Sci., vol. 13-132, pp. 221–230, 1998.

  • [159]  K. Stokbro, C. Thirstrup, M. Sakurai, U. Quaade, B. Y.-K. Hu, F. Perez-Murano, and F. Grey, “STM-Induced Hydrogen Desorption via a Hole Resonance,” Phys. Rev. Lett., vol. 80, pp. 2618–2621, 1998.

  • [160]  M. Budde, G. Lüpke, E. Chen, X. Zhang, N. H. Tolk, L. C. Feldman, E. Tarhan, A. K. Ramdas, and M. Stavola, “Lifetimes of Hydrogen and Deuterium Related Vibrational Modes in Silicon,” Phys. Rev. Lett., vol. 87, no. 4, pp. 1455–1461, 2001.

  • [161]  B. Tuttle and C. V. de Walle, “Structure, Energetics, and Vibrational Properties of Si-H Bond Dissociation in Silicon,” Phys. Rev. B, vol. 59, no. 20, pp. 12 884–12 889, 1999.

  • [162]  H. Kufluoglu and M. Alam, “A Computational Model of NBTI and Hot Carrier Injection Time-exponents for MOSFET Reliability,” Journ. Comput. Electron., vol. 3, pp. 165–169, 2004.

  • [163]  ——, “A Geometrical Unification of the Theories of NBTI and HCI Time Exponents and its Implications for Ultra-scaled Planar and Surround-gate MOSFETs,” in Proc. International Electron Devices Meeting (IEDM), 2004, pp. 113–116.

  • [164]  M. Song, K. MacWilliams, and C. Woo, “Comparison of NMOS and PMOS Hot Carrier Effects from 300 to 77 K,” IEEE Trans Electron Dev., vol. 44, no. 2, pp. 268–276, 1997.

  • [165]  T. Grasser, H. Reisinger, W. Goes, T. Aichinger, P. Hehenberger, P.-J. Wagner, M. Nelhiebel, J. Franco, and B. Kaczer, “Switching Oxide Traps as the Missing Link Between Negative Bias Temperature Instability and Random Telegraph Noise,” in Proc. International Electron Devices Meeting (IEDM), 2009.

  • [166]  T. Grasser, H. Reisinger, P.-J. Wagner, D. Kaczer, F. Schanowsky, and W. Gös, “The Time Dependent Defect Spectroscopy (TDDS) for the Characterization of the Bias Temperature Instability,” in Proc. International Reliability Physics Symposium (IRPS), 2010, pp. 16–25.

  • [167]  S. Rauch, G. L. Rosa, and and, “The Energy-Driven Paradigm of NMOSFET Hot-Carrier Effects,” IEEE Trans. Dev. Material. Reliab., vol. 5, no. 4, pp. 701–705, 2005.

  • [168]  M. Jo, S. Kim, C. Cho, M. Chang, and H. Hwang, “Gate Voltage Dependence on Hot Carrier Degradation at an Elevated Temperature in a Device with Ultrathin Silicon Oxynitride,” Appl. Phys. Lett., vol. 94, no. 5, pp. 053 505–1–053 505–3, 2009.

  • [169]  C. Guerin, V. Huard, and A. Bravaix, “General Framework about Defect Creation at the \( \mathrm {Si/SiO_2} \) Interface,” Journ. Appl. Phys., vol. 105, pp. 114 513–1–114 513–12, 2009.

  • [170]  ——, “The Energy-Driven Hot-carrier Degradation Modes of nMOSFETs,” IEEE Trans. Dev. Material. Reliab., vol. 7, no. 2, pp. 225–235, 2007.

  • [171]  S. Tyaginov, I. Starkov, O. Triebl, J. Cervenka, C. Jungemann, S. Carniello, J. Park, H. Enichlmail, C. Kernstock, E. Seebacher, R. Minixhofer, H. Ceric, and T. Grasser, “Interface Traps Density-of-States as a Vital Component for Hot-carrier Degradation Modeling,” Microelectronics Reliability, vol. 50, pp. 1267–1272, 2010.

  • [172]  M. Lundstrom, “Drift-diffusion and Computational Electronics - Still Going Strong After 40 Years!” in 2015 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), Sept 2015, pp. 1–3.

  • [173]  S. Datta, Electronic Transport in Mesoscopic Systems, 1st ed., ser. Cambridge Studies in Semiconductor Physics and Microelectronic Engineering. Cambridge University Press, 2002.

  • [174]  T. Grasser, H. Kosina, and S. Selberherr, “Hot Carrier Effects Within Macroscopic Transport Models,” International Journal of High Speed Electronics and Systems, vol. 13, no. 3, pp. 873–901, 2003.

  • [175]  M. Lundstrom, Fundamentals of Carrier Transport, 2nd ed. Cambridge University Press, 2000.

  • [176]  T. Grasser, H. Kosina, M. Gritsch, and S. Selberherr, “Using Six Moments of Boltzmann’s Transport Equation for Device Simulation,” Journ. of Appl. Phys., vol. 90, no. 5, pp. 2389–2396, 2001.

  • [177]  T. Grasser, H. Kosina, C. Heitzinger, and S. Selberherr, “Characterization of the Hot Electron Distribution Function Using Six Moments,” Journ. Appl. Phys., vol. 91, no. 6, pp. 3869–3879, 2002.

  • [178]  P. P. Ansgar Jüngel, Stefan Krause, “A Hierarchy of Diffusive Higher-Order Moment Equations for Semiconductors,” SIAM Journ. on Appl. Mathematics, vol. 68, no. 1, pp. 171–198, 2007.

  • [179]  M. Gritsch, Numerical Modeling of Silicon-on-Insulator MOSFETs. PhD Thesis, TU Wien, 2002.

  • [180]  D. M. Caughey and R. E. Thomas, “Carrier mobilities in silicon empirically related to doping and field,” Proceedings of the IEEE, vol. 55, no. 12, pp. 2192–2193, 1967.

  • [181]  S. Selberherr, Analysis and Simulation of Semiconductor Devices. Springer-Verlag, 1984.

  • [182]  D. Vasileska, K. Raleva, and S. M. Goodnick, Monte Carlo Device Simulations. Prof. Shaul Mordechai (Ed.), InTech, 2011.

  • [183]  T. Grasser, H. Kosina, and S. Selberherr, “Investigation of Spurious Velocity Overshoot Using Monte Carlo Data,” Appl. Phys. Lett., vol. 79, no. 12, pp. 1900–1903, 2001.

  • [184]  T. Grasser and S. Selberherr, “Limitations of Hydrodynamic and Energy-Transport Models,” in Proc. Int. Soc. Opt. Engg., vol. 1, 2002, pp. 584–591.

  • [185]  T. Grasser, H. Kosina, C. Heitzinger, and S. Selberherr, “Accurate Impact Ionization Model Which Accounts for Hot and Cold Carrier Populations,” Appl. Phys. Lett., vol. 80, no. 4, pp. 613–615, 2002.

  • [186]  S. Tyaginovr, Physics-Based Modeling of Hot-Carrier Degradation. In: Grasser T. (eds) Hot Carrier Degradation in Semiconductor Devices. Springer International Publishing, 2014.

  • [187]  S. Tyaginov, I. Starkov, O. Triebl, J. Cervenka, C. Jungemann, S. Carniello, J. Park, H. Enichlmair, M. Karner, C. Kernstock, E. Seebacher, R. Minixhofer, H. Ceric, and T. Grasser, “Hot-Carrier Degradation Modeling Using Full-Band Monte-Carlo Simulations,” in Proc. International Symposium on the Physical & Failure Analysis of Integrated Circuits (IPFA), 2010.

  • [188]  W. McMahon and K. Hess, “A Multi-Carrier Model for Interface Trap Generation,” Journ. of Comput. Electron., vol. 1, no. 3, pp. 395–398, 2002.

  • [189]  B. Persson and P. Avouris, “Local Bond Breaking via STM-induced Excitations: the Role of Temperature,” Surface Science, vol. 390, no. 1-3, pp. 45–54, 1997.

  • [190]  A. Bravaix, V. Huard, D. Goguenheim, and E. Vincent, “Hot-Carrier to Cold-Carrier Device Lifetime Modeling with Temperature for Low power 40nm Si-Bulk NMOS and PMOS FETs,” in Proc. International Electron Devices Meeting (IEDM), 2011, pp. 622–625.

  • [191]  I. Andrianov and P. Saalfrank, “Theoretical Study of Vibration-Phonon Coupling of H Adsorbed on a Si(100) Surface,” The Journal of Chemical Physics, vol. 124, no. 3, 2006.

  • [192]  A.Haggag, M. Lemanski, G. Anderson, P. Abramovitz, and M. Moosa, “Realistic Projections of Product Fmax Shift and Statistics Due to HCI and NBTI,” in Proc. International Reliability Physics Symposium (IRPS), 2007, pp. 93–96.

  • [193]  A. Stesmans, “Revision of H \( _\mathrm {2} \) Passivation of P \( _\mathrm {2} \) Interface Defects in Standard (111)Si/SiO \( _\mathrm {2} \),” Applied Physics Letters, vol. 68, no. 19, pp. 2723–2725, 1996.

  • [194]  G. Pobegen, S. Tyaginov, M. Nelhiebel, and T. Grasser, “Observation of Normally Distributed Activation Energies for the Recovery from Hot Carrier Damage,” IEEE Electron Dev. Lett., vol. 34, no. 8, pp. 939–941, 2013.

  • [195]  H.-S. Wong, M. White, J. Krutsick, and R. Booth, “Modeling of Transconductance Degradation and Extraction of Threshold Voltage in Thin Oxide MOSFET’s,” Solid-State Electron., vol. 30, no. 9, pp. 953–958, 1987.

  • [196]  A. G. Prakash, S. Ke, and K. Siddappa, “High-Energy Radiation Effects on Subthreshold Characteristics, Transconductance and Mobility of N-Channel MOSFETs,” Semicond. Sci. Technol., vol. 18, no. 12, pp. 1037–1042, 2003.

  • [197]  A. W. Ludikhuize, “A review of resurf technology,” in 12th International Symposium on Power Semiconductor Devices ICs. Proceedings (Cat. No.00CH37094), 2000, pp. 11–18.

  • [198]  Synopsys, Sentaurus Process, Advanced Simulator for Process Technologies.

  • [199]  ViennaMesh, http://viennamesh.sourceforge.net/.

  • [200]  K. Rupp, P. Lagger, T. Grasser, and A. Jüngel, “Inclusion of Carrier-Carrier-Scattering into Arbitrary-Order Spherical Harmonics Expansions of the Boltzmann Transport Equation,” in Proc. International Workshop on Computational Electronics (IWCE), 2012, pp. 1–4.

  • [201]  J. F. Chen, S. Y. Chen, K. M. Wu, and C. M. Liu, “Investigation of Hot-Carrier-Induced Degradation Mechanisms in p-Type High-Voltage Drain Extended Metal Oxide Semiconductor Transistors,” Jap. Journ. Appl. Phys., vol. 48, 2009.

  • [202]  I. Starkov, H. Enichlmair, S. E. Tyaginov, and T. Grasser, “Analysis of the Threshold Voltage Turn-Around Effect in High-Voltage n-MOSFETs Due to Hot-Carrier Stress,” in Proc. IRPS, 2012, pp. XT.7.1–XT.7.6.

  • [203]  P. Sharma, S. Tyaginov, Y. Wimmer, F. Rudolf, H. Enichlmair, J.-M. Park, H. Ceric, and T. Grasser, “A Model for Hot-Carrier Degradation in nLDMOS Transistors Based on the Exact Solution of the Boltzmann Transport Equation Versus the Drift-Diffusion Scheme,” in Proc. EUROSOI-ULIS, 2015, pp. 21–24.

  • [204]  ViennaSHE, http://viennashe.sourceforge.net/.

  • [205]  S. Tyaginov, I. Starkov, O. Triebl, H. Enichlmair, C. Jungemann, J. Park, H. Ceric, and T. Grasser, “Secondary Generated Holes as a Crucial Component for Modeling of HC Degradation in High-Voltage n-MOSFET,” in Proc. International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), 2011, pp. 123–126.

  • [206]  D. Ventura, A. Gnudi, and G. Baccarani, “An Efficient Method for Evaluating the Energy Distribution of Electrons in Semiconductors Based on Spherical Harmonics Expansion,” IEICE Trans. Electron., vol. E75-C, no. 2, pp. 194–199, 1992.

  • [207]  P. Childs and C. Leung, “New Mechanism of Hot Carrier Generation in Very Short Channel MOSFETs,” Electronics Letters, vol. 31, no. 2, pp. 139–141, 1995.

  • [208]  C. Jacoboni and P. Lugli, The Monte Carlo Method for Semiconductor Device Simulation. Springer-Verlag-Wien, 1989.