Impact of Charge Transitions at Atomic Defect Sites on Electronic Device Performance
Bibliography
-
[1] Tibor Grasser. “Stochastic charge trapping in oxides: From random telegraph noise to bias temperature instabilities”. In: Microelectron. Reliab. 52.1 (2012), pp. 39–70. issn: 0026-2714. doi: 10.1016/j.microrel.2011.09.002.
-
[2] Dominic Waldhoer, Christian Schleich, Jakob Michl, Alexander Grill, Dieter Claes, Alexander Karl, Theresia Knobloch, Gerhard Rzepa, Jacopo Franco, Ben Kaczer, Michael Waltl, and Tibor Grasser. “Comphy v3.0—A compact-physics framework for modeling charge trapping related reliability phenomena in MOS devices”. In: Microelectron. Reliab. 146 (2023), p. 115004. issn: 0026-2714. doi: 10.1016/j.microrel.2023.115004.
-
[3] Wolfgang Goes, Franz Schanovsky, and Tibor Grasser. “Advanced Modeling of Oxide Defects”. In: Bias Temperature Instability for Devices and Circuits. Ed. by Tibor Grasser. New York, NY: Springer New York, 2014, pp. 409–446. isbn: 978-1-4614-7909-3. doi: 10.1007/978-1-4614-7909-3_16.
-
[4] Christoph Wilhelmer, Dominic Waldhoer, Markus Jech, Al-Moatasem Bellah El-Sayed, Lukas Cvitkovich, Michael Waltl, and Tibor Grasser. “Ab initio investigations in amorphous silicon dioxide: Proposing a multi-state defect model for electron and hole capture”. In: Microelectron. Reliab. 139 (2022), p. 114801. issn: 0026-2714. doi: 10.1016/j.microrel.2022.114801.
-
[5] Christian Schleich, Dominic Waldhör, Theresia Knobloch, Weifeng Zhou, Bernhard Stampfer, Jakob Michl, Michael Waltl, and Tibor Grasser. “Single- Versus Multi-Step Trap Assisted Tunneling Currents—Part I: Theory”. In: IEEE Transactions on Electron Devices 69.8 (2022), pp. 4479–4485. doi: 10.1109/TED.2022.3185966.
-
[6] L. Tian and R. W. Simmonds. “Josephson Junction Microscope for Low-Frequency Fluctuators”. In: Phys. Rev. Lett. 99.13 (2007), p. 137002. doi: 10.1103/PhysRevLett.99.137002.
-
[7] M. S. Simmonds R. W. and Allman, F. Altomare, K. Cicak, K. D. Osborn, J. A. Park, M. Sillanpää J. A. Sirois A. and Strong, and J. D. Whittaker. “Coherent interactions between phase qubits, cavities, and TLS defects”. In: Quantum Inf. Process. 8 (2009), pp. 117–131. doi: 10.1007/s11128-009-0095-z.
-
[8] Jae-Gab Lim, Seung-Dong Yang, Ho-Jin Yun, Jun-Kyo Jung, Jung-Hyun Park, Chan Lim, et al. “High performance SONOS flash memory with in-situ silicon nanocrystals embedded in silicon nitride charge trapping layer”. In: Solid-State Electron. 140 (2018), pp. 134–138. issn: 0038-1101. doi: 10.1016/j.sse.2017.10.031.
-
[9] Andrea Padovani, Antonio Arreghini, Luca Vandelli, Luca Larcher, Geert Van den Bosch, and Jan Van Houdt. “Evidences for vertical charge dipole formation in charge-trapping memories and its impact on reliability”. In: Appl. Phys. Lett. 101.5 (2012), p. 053505. issn: 0003-6951. doi: 10.1063/1.4740255.
-
[10] Guido Burkard, Thaddeus D. Ladd, Andrew Pan, John M. Nichol, and Jason R. Petta. “Semiconductor spin qubits”. In: Rev. Mod. Phys. 95.2 (2023), p. 025003. doi: 10.1103/RevModPhys.95.025003.
-
[11] Markus Jech, Al-Moatasem El-Sayed, Stanislav Tyaginov, Alexander L. Shluger, and Tibor Grasser. “Ab initio treatment of silicon-hydrogen bond rupture at Si/SiO2 interfaces”. In: Phys. Rev. B 100.19 (2019), p. 195302. doi: 10.1103/PhysRevB.100.195302.
-
[12] R. A. B. Devine and J. Arndt. “Si—O bond-length modification in pressure-densified amorphous SiO2 ”. In: Phys. Rev. B 35.17 (1987), pp. 9376–9379. doi: 10.1103/PhysRevB.35.9376.
-
[13] Sanghamitra Mukhopadhyay, Peter V. Sushko, A. Marshall Stoneham, and Alexander L. Shluger. “Modeling of the structure and properties of oxygen vacancies in amorphous silica”. In: Phys. Rev. B 70.19 (2004), p. 195203. doi: 10.1103/PhysRevB.70.195203.
-
[14] Franz Schanovsky, Oskar Baumgartner, V. Sverdlov, and T. Grasser. “A multi scale modeling approach to non-radiative multi phonon transitions at oxide defects in MOS structures”. In: J. Comput. Electron. 11 (2012), pp. 218–224. doi: 10.1007/s10825-012-0403-1.
-
[15] Al-Moatasem El-Sayed, Matthew B. Watkins, Valery V. Afanas’ev, and Alexander L. Shluger. “Nature of intrinsic and extrinsic electron trapping in SiO2 ”. In: Phys. Rev. B 89.12 (2014), p. 125201. doi: 10.1103/PhysRevB.89.125201.
-
[16] S. Dannefaer, T. Bretagnon, and D. Kerr. “Vacancy-type defects in crystalline and amorphous SiO2”. In: J. Appl. Phys. 74.2 (1993), pp. 884–890. doi: 10.1063/1.354882.
-
[17] Gianfranco Pacchioni, Linards Skuja, and D. Griscom. “Defects in SiO2 and Related Dielectrics: Science and Technology”. In: Springer Dordrecht, 2000. isbn: 978-0-7923-6686-7. doi: 10.1007/978-94-010-0944-7.
-
[18] Tibor Grasser, Hans Reisinger, Paul-Jürgen Wagner, and Ben Kaczer. “Time-dependent defect spectroscopy for characterization of border traps in metal-oxide-semiconductor transistors”. In: Phys. Rev. B 82.24 (2010), p. 245318. doi: 10.1103/PhysRevB.82.245318.
-
[19] Chandreswar Mahata, Il-Kwon Oh, Chang Mo Yoon, Chang Wan Lee, Jungmok Seo, Hassan Algadi, Mi-Hyang Sheen, Young-Woon Kim, Hyungjun Kim, and Taeyoon Lee. “The impact of atomic layer deposited SiO2 passivation for high-κ Ta1−x Zrx O on the InP substrate”. In: J. Mater. Chem. C 3.39 (2015), pp. 10293–10301. doi: 10.1039/C5TC01890K.
-
[20] Anri Nakajima, Quazi D.M Khosru, Takashi Yoshimoto, and Shin Yokoyama. “Atomic-layer-deposited silicon-nitride/SiO2 stack–a highly potential gate dielectrics for advanced CMOS technology”. In: Microelectron. Reliab. 42.12 (2002), pp. 1823–1835. issn: 0026-2714. doi: 10.1016/S0026-2714(02)00095-1.
-
[21] R.M.C. de Almeida and I.J.R. Baumvol. “Reaction-diffusion in high-κ dielectrics on Si”. In: Surf. Sci. Rep. 49.1 (2003), pp. 1–114. issn: 0167-5729. doi: 10.1016/S0167-5729(02)00113-9.
-
[22] T. L. Duan, L. Pan, Z. Zhang, E. S. Tok, and J. S. Pan. “Characterization of the electronic structure and thermal stability of HfO2 /SiO2 /Si gate dielectric stack”. In: Surf. Interface Anal. 49.8 (2017), pp. 776–780. doi: doi.org/10.1002/sia.6222.
-
[23] David A. Muller and Glen D. Wilk. “Atomic scale measurements of the interfacial electronic structure and chemistry of zirconium silicate gate dielectrics”. In: Appl. Phys. Lett. 79.25 (2001), pp. 4195–4197. issn: 0003-6951. doi: 10.1063/1.1426268.
-
[24] Lukas Cvitkovich, Dominic Waldhör, Al-Moatassem El-Sayed, Markus Jech, Christoph Wilhelmer, and Tibor Grasser. “Dynamic modeling of Si(100) thermal oxidation: Oxidation mechanisms and realistic amorphous interface generation”. In: Appl. Surf. Sci. 610 (2023), p. 155378. issn: 0169-4332. doi: 10.1016/j.apsusc.2022.155378.
-
[25] Byoung Keon Park, Jaehoo Park, Moonju Cho, Cheol Seong Hwang, Kiyoung Oh, Youngki Han, and Doo Young Yang. “Interfacial reaction between chemically vapor-deposited HfO2 thin films and a HF-cleaned Si substrate during film growth and postannealing”. In: Appl. Phys. Lett. 80.13 (2002), pp. 2368–2370. doi: 10.1063/1.1466534.
-
[26] Yannick Wimmer, Al-Moatasem El-Sayed, Wolfgang Goes, Tibor Grasser, and Alexander L. Shluger. “Role of hydrogen in volatile behavior of defects in SiO2 -based electronic devices”. In: Proc. R. Soc. A 472.2190 (2016), p. 20160009. doi: 10.1098/rspa.2016.0009.
-
[27] T. Grasser, B. Kaczer, W. Goes, H. Reisinger, T. Aichinger, P. Hehenberger, P. Wagner, F. Schanovsky, J. Franco, M. T. Toledano Luque, and M. Nelhiebel. “The Paradigm Shift in Understanding the Bias Temperature Instability: From Reaction–Diffusion to Switching Oxide Traps”. In: IEEE Trans. Electron. Devices 58.11 (2011), pp. 3652–3666. doi: 10.1109/TED.2011.2164543.
-
[28] Zhong-Yi Lu, C. J. Nicklaw, D. M. Fleetwood, R. D. Schrimpf, and S. T. Pantelides. “Structure, Properties, and Dynamics of Oxygen Vacancies in Amorphous SiO2 ”. In: Phys. Rev. Lett. 89.28 (2002), p. 285505. doi: 10.1103/PhysRevLett.89.285505.
-
[29] P.V. Sushko, S. Mukhopadhyay, A.M. Stoneham, and A.L. Shluger. “Oxygen vacancies in amorphous silica: Structure and distribution of properties”. In: Microelectron. Eng. 80 (2005), pp. 292–295. issn: 0167-9317. doi: 10.1016/j.mee.2005.04.083.
-
[30] F. Schanovsky, O. Baumgartner, W., and T. Grasser. “A detailed evaluation of model defects as candidates for the bias temperature instability”. In: 2013 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD). 2013, pp. 1–4. doi: 10.1109/SISPAD.2013.6650559.
-
[31] Dominic Waldhoer, Christian Schleich, Jakob Michl, Bernhard Stampfer, Konstantinos Tselios, Eleftherios G. Ioannidis, Hubert Enichlmair, Michael Waltl, and Tibor Grasser. “Toward Automated Defect Extraction From Bias Temperature Instability Measurements”. In: IEEE Trans. Electron Devices 68.8 (2021), pp. 4057–4063. doi: 10.1109/TED.2021.3091966.
-
[32] W. Goes, Y. Wimmer, A.-M. El-Sayed, G. Rzepa, M. Jech, A.L. Shluger, and T. Grasser. “Identification of oxide defects in semiconductor devices: A systematic approach linking DFT to rate equations and experimental evidence”. In: Microelectron. Reliab. 87 (2018), pp. 286–320. issn: 0026-2714. doi: 10.1016/j.microrel.2017.12.021.
-
[33] Al-Moatasem El-Sayed, Matthew B. Watkins, Tibor Grasser, Valery V. Afanas’ev, and Alexander L. Shluger. “Hydrogen-Induced Rupture of Strained Si-O Bonds in Amorphous Silicon Dioxide”. In: Phys. Rev. Lett. 114.11 (2015), p. 115503. doi: 10.1103/PhysRevLett.114.115503.
-
[34] Al-Moatasem El-Sayed, Yannick Wimmer, Wolfgang Goes, Tibor Grasser, Valery V. Afanas’ev, and Alexander L. Shluger. “Theoretical models of hydrogen-induced defects in amorphous silicon dioxide”. In: Phys. Rev. B 92.1 (2015), p. 014107. doi: 10.1103/PhysRevB.92.014107.
-
[35] Moloud Kaviani, Valeri V. Afanas’ev, and Alexander L. Shluger. “Interactions of hydrogen with amorphous hafnium oxide”. In: Phys. Rev. B 95.7 (2017), p. 075117. doi: 10.1103/PhysRevB.95.075117.
-
[36] A. Iino, M. Kuwabara, and K. Kokura. “Mechanisms of hydrogen-induced losses in silica-based optical fibers”. In: J. Light. Technol. 8.11 (1990), pp. 1675–1679. doi: 10.1109/50.60564.
-
[37] J. Stone, J. M. Wiesenfeld, D. Marcuse, C. A. Burrus, and S. Yang. “Formation of hydroxyl due to reaction of hydrogen with silica optical fiber preforms”. In: Appl. Phys. Lett. 47.3 (1985), pp. 328–330. doi: 10.1063/1.96152.
-
[38] Michael Stuckelberger, Rémi Biron, Nicolas Wyrsch, Franz-Josef Haug, and Christophe Ballif. “Review: Progress in solar cells from hydrogenated amorphous silicon”. In: Renew. Sustain. Energy Rev. 76 (2017), pp. 1497–1523. issn: 1364-0321. doi: 10.1016/j.rser.2016.11.190.
-
[39] Hiroshi Nagayoshi, Yuichi Onozawa, Makoto Ikeda, Misako Yamaguchi, Yuichi Yamamoto, Tsuyoshi Uematsu, Tadashi Saitoh, and Koichi Kamisako. “Effect of Hydrogen-Radical Annealing for SiO2 Passivation”. In: Jpn. J. Appl. Phys 35.Part 2, No. 8B (1996), pp. L1047–L1049. doi: 10.1143/jjap.35.l1047.
-
[40] C. Kaneta, T. Yamasaki, T. Uchiyama, T. Uda, and K. Terakura. “Defect States Due to Silicon Dangling Bonds at the Si(100)/SiO2 Interface and the Passivation by Hydrogen Atoms”. In: MRS Proceedings 592 (1999), p. 39. doi: 10.1557/PROC-592-39.
-
[41] F. Messina and M. Cannas. “Character of the Reaction between Molecular Hydrogen and a Silicon Dangling Bond in Amorphous SiO2 ”. In: J. Phys. Chem. C 111.18 (2007), pp. 6663–6667. doi: 10.1021/jp0705727.
-
[42] A. Stesmans. “Interaction of Pb defects at the (111)Si/SiO2 interface with molecular hydrogen: Simultaneous action of passivation and dissociation”. In: J. Appl. Phys. 88.1 (2000), pp. 489–497. doi: 10.1063/1.373684.
-
[43] Ph. Avouris, R.E. Walkup, A.R. Rossi, T.-C. Shen, G.C. Abeln, J.R. Tucker, and J.W. Lyding. “STM-induced H atom desorption from Si(100): Isotope effects and site selectivity”. In: Chem. Phys. Lett. 257.1 (1996), pp. 148–154. issn: 0009-2614. doi: 10.1016/0009-2614(96)00518-0.
-
[44] Anand T. Krishnan, Srinivasan Chakravarthi, Paul Nicollian, Vijay Reddy, and Srikanth Krishnan. “Negative bias temperature instability mechanism: The role of molecular hydrogen”. In: Appl. Phys. Lett. 88.15 (2006), p. 153518. doi: 10.1063/1.2191828.
-
[45] Christoph Wilhelmer, Markus Jech, Dominic Waldhör, Al-Moatasem El-Sayed, Lukas Cvitkovich, and Tibor Grasser. “Statistical Ab Initio Analysis of Electron Trapping Oxide Defects in the Si/SiO2 Network”. In: Proceedings of the European Solid-State Device Research Conference (ESSDERC). 2021, pp. 243–246. isbn: 978-1-6654-3748-6. doi: 10.1109/ESSDERC53440.2021.9631833.
-
[46] Christian Schleich, Dominic Waldhoer, Katja Waschneck, Maximilian W. Feil, Hans Reisinger, Tibor Grasser, and Michael Waltl. “Physical Modeling of Charge Trapping in 4H-SiC DMOSFET Technologies”. In: IEEE Transactions on Electron Devices 68.8 (2021), pp. 4016–4021. doi: 10.1109/TED.2021.3092295.
-
[47] L. Skuja, K. Kajihara, M. Hirano, A. Saitoh, and H. Hosono. “An increased F2 -laser damage in ‘wet’ silica glass due to atomic hydrogen: A new hydrogen-related E’-center”. In: J. Non-Cryst. Solids 352.23 (2006), pp. 2297–2302. issn: 0022-3093. doi: 10.1016/j.jnoncrysol.2006.01.101.
-
[48] Al-Moatasem El-Sayed, Matthew B. Watkins, Tibor Grasser, Valeri V. Afanas’ev, and Alexander L. Shluger. “Hole trapping at hydrogenic defects in amorphous silicon dioxide”. In: Microelectron. Eng. 147 (2015), pp. 141–144. issn: 0167-9317. doi: 10.1016/j.mee.2015.04.073.
-
[49] J. Isoya, J. A. Weil, and L. E. Halliburton. “EPR and ab initio SCF-MO studies of the Si·H–Si system in the E4′ center of α-quartz”. In: J. Chem. Phys. 74.10 (1981), pp. 5436–5448. doi: 10.1063/1.440948.
-
[50] R. A. Weeks and C. M. Nelson. “Trapped Electrons in Irradiated Quartz and Silica: II, Electron Spin Resonance”. In: J. Am. Ceram. Soc 43.8 (2006), pp. 399–404. doi: 10.1111/j.1151-2916.1960.tb13682.x.
-
[51] John F. Conley, Patrick M. Lenahan, Aivars J. Lelis, and Timothy R. Oldham. “Electron spin resonance evidence for the structure of a switching oxide trap: Long term structural change at silicon dangling bond sites in SiO2 ”. In: Appl. Phys. Lett. 67.15 (1995), pp. 2179–2181. doi: 10.1063/1.115095.
-
[52] Yunliang Yue, Yu Song, and Xu Zuo. “First principles study of oxygen vacancy defects in amorphous SiO2 ”. In: AIP Adv. 7.1 (2017), p. 015309. doi: 10.1063/1.4975147.
-
[53] Christoph Wilhelmer, Dominic Waldhör, Lukas Cvitkovich, Diego Milardovich, Michael Waltl, and Tibor Grasser. “Polaron formation in the hydrogenated amorphous silicon nitride Si3 N4 :H”. In: Phys. Rev. B 110.4 (2024), p. 045201. doi: 10.1103/PhysRevB.110.045201.
-
[54] Christoph Wilhelmer, Dominic Waldhoer, Lukas Cvitkovich, Diego Milardovich, Michael Waltl, and Tibor Grasser. “Over- and Undercoordinated Atoms as a Source of Electron and Hole Traps in Amorphous Silicon Nitride (a-Si3 N4 )”. In: Nanomaterials 13 (2023), p. 2286. issn: 2079-4991. doi: 10.3390/nano13162286.
-
[55] Christoph Wilhelmer, Dominic Waldhoer, Diego Milardovich, Lukas Cvitkovich, Michael Waltl, and Tibor Grasser. “Intrinsic Electron Trapping in Amorphous Silicon Nitride (a-Si3 N4 :H)”. In: 2023 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD). 2023, pp. 149–152. doi: 10.23919/SISPAD57422.2023.10319493.
-
[56] Uttam Kumar Das, Nabeel Aslam, Muhammad Mustafa Hussain, and Nazek El-Atab. “Silicon-Based Charge Trapping Memory Devices for Next-Generation Flexible Electronics Application”. In: IEEE J-FLEX 2.5 (2023), pp. 408–413. doi: 10.1109/JFLEX.2023.3329080.
-
[57] Yumin Song, Jun-Kyo Jeong, Seung-Dong Yang, Deok-Min Park, Yun-mi Kang, and Ga-Won Lee. “Process effect analysis on nitride trap distribution in silicon-oxide-nitride-oxide-silicon flash memory based on charge retention model”. In: Mater. Express 11.9 (2021), pp. 1615–1618. issn: 2158-5849. doi: doi:10.1166/mex.2021.2067.
-
[58] V. A. Gritsenko. “Silicon Nitride on Si: Electronic Structure for Flash Memory Devices”. In: Thin Films on Silicon. World Scientific, Singapore, 2016. Chap. 6, pp. 273–322. doi: 10.1142/9789814740487_0006.
-
[59] Jang Uk. Lee, Kang Seob Roh, Gu Cheol Kang, Seung Hwan Seo, Kwan Young Kim, Sunyeong Lee, Kwan Jae Song, et al. “Optical capacitance-voltage characterization of charge traps in the trapping nitride layer of charge trapped flash memory devices”. In: Appl. Phys. Lett. 91.22 (2007). issn: 0003-6951. doi: 10.1063/1.2819092.
-
[60] Doo-Hyun Kim, Seongjae Cho, Dong Hua Li, Jang-Gn Yun, Jung Hoon Lee, Byung-Gook Park, et al. “Program/Erase Model of Nitride-Based NAND-Type Charge Trap Flash Memories”. In: Japanese J. Appl. Phys. 49.8R (2010), p. 084301. doi: 10.1143/JJAP.49.084301.
-
[61] Hang-Ting Lue, Sheng-Chih Lai, Tzu-Hsuan Hsu, Yi-Hsuan Hsiao, Pei-Ying Du, Szu-Yu Wang, Kuang-Yeu Hsieh, Rich Liu, and Chih-Yuan Lu. “A Critical Review of Charge-Trapping NAND Flash Devices”. In: 9th International Conference on Solid-State and Integrated-Circuit Technology. 2008, pp. 807–810. doi: 10.1109/ICSICT.2008.4734663.
-
[62] D. T. Krick, P. M. Lenahan, and J. Kanicki. “Electrically active point defects in amorphous silicon nitride: An illumination and charge injection study”. In: J. Appl. Phys. 64.7 (1988), pp. 3558–3563. issn: 0021-8979. doi: 10.1063/1.341499.
-
[63] R. P. Vedula, S. Palit, M. A. Alam, and A. Strachan. “Role of atomic variability in dielectric charging: A first-principles-based multiscale modeling study”. In: Phys. Rev. B 88.20 (2013), p. 205204. doi: 10.1103/PhysRevB.88.205204.
-
[64] Gijae Kang, Dongheon Lee, Kyeongpung Lee, Jeenu Kim, and Seungwu Han. “First-principles study on the negative-U behavior of K centers in amorphous Si3 N4−x ”. In: Phys. Rev. Appl. 10.6 (2018), p. 064052. doi: 10.1103/PhysRevApplied.10.064052.
-
[65] W. L. Warren, J. Kanicki, J. Robertson, E. H. Poindexter, and P. J. McWhorter. “Electron paramagnetic resonance investigation of charge trapping centers in amorphous silicon nitride films”. In: J. Appl. Phys. 74.6 (1993), pp. 4034–4046. doi: 10.1063/1.355315.
-
[66] W. L. Warren, C. H. Seager, J. Kanicki, M. S. Crowder, and E. Sigari. “Ultraviolet light induced annihilation of silicon dangling bonds in hydrogenated amorphous silicon nitride films”. In: J. Appl. Phys. 77.11 (1995), pp. 5730–5735. doi: 10.1063/1.359593.
-
[67] Tong Chen, Kangmin Leng, Zhongyuan Ma, Xiaofan Jiang, Kunji Chen, Wei Li, Jun Xu, and Ling Xu. “Tracing the Si Dangling Bond Nanopathway Evolution ina-SiNx :H Resistive Switching Memory by the Transient Current”. In: Nanomaterials 13.1 (2023), p. 85. issn: 2079-4991. doi: 10.3390/nano13010085.
-
[68] J. Robertson. “Defects and hydrogen in amorphous silicon nitride”. In: Philos. Mag. B 69.2 (1994), pp. 307–326. doi: 10.1080/01418639408240111.
-
[69] H. Mäckel and R. Lüdemann. “Detailed study of the composition of hydrogenated SiNx layers for high-quality silicon surface passivation”. In: J. Appl. Phys. 92.5 (2002), pp. 2602–2609. issn: 0021-8979. doi: 10.1063/1.1495529.
-
[70] F. Volpi, M. Braccini, A. Devos, G. Raymond, A. Pasturel, and P. Morin. “Dual mechanical behaviour of hydrogen in stressed silicon nitride thin films”. In: J. Appl. Phys. 116.4 (2014), p. 043506. issn: 0021-8979. doi: 10.1063/1.4887814.
-
[71] Sun Jung Kim, Sang Heon Yong, Hyung June Ahn, Yooncheol Shin, and Heeyeop Chae. “Improvement in the moisture barrier properties and flexibility by reducing hydrogen dangling bonds in SiNx thin films with plasma surface treatment”. In: Surf. Coat. Technol. 383 (2020), p. 125210. issn: 0257-8972. doi: 10.1016/j.surfcoat.2019.125210.
-
[72] Ray Chow, W. A. Lanford, Wang Ke-Ming, and Richard S. Rosler. “Hydrogen content of a variety of plasma-deposited silicon nitrides”. In: J. Appl. Phys. 53.8 (1982), pp. 5630–5633. doi: 10.1063/1.331445.
-
[73] Lukas Hückmann, Jonathon Cottom, and Jörg Meyer. “Intrinsic Charge Trapping and Reversible Charge Induced Structural Modifications in a-Si3 N4 ”. In: Adv. Physics Res. 3.2 (2024), p. 2300109. doi: 10.1002/apxr.202300109.
-
[74] L. E. Hintzsche, C. M. Fang, M. Marsman, G. Jordan, M. W. P. E. Lamers, A. W. Weeber, and G. Kresse. “Defects and defect healing in amorphous Si3 N4−x Hy : An ab initio density functional theory study”. In: Phys. Rev. B 88.15 (2013), p. 155204. doi: 10.1103/PhysRevB.88.155204.
-
[75] Ravi Pramod Vedula, Nathan L. Anderson, and Alejandro Strachan. “Effect of topological disorder on structural, mechanical, and electronic properties of amorphous silicon nitride: An atomistic study”. In: Phys. Rev. B 85.20 (2012), p. 205209. doi: 10.1103/PhysRevB.85.205209.
-
[76] Jack Strand, Moloud Kaviani, Valeri V Afanas’ev, Judit G Lisoni, and Alexander L Shluger. “Intrinsic electron trapping in amorphous oxide”. In: Nanotechnol. 29.12 (2018), p. 125703. doi: 10.1088/1361-6528/aaa77a.
-
[77] L. Breuil, J. G. Lisoni, R. Delhougne, C. L. Tan, J. Van Houdt, G. Van den bosch, and A. Furnemont. “Improvement of Poly-Si Channel Vertical Charge Trapping NAND Devices Characteristics by High Pressure D2 /H2 Annealing”. In: 2016 IEEE 8th International Memory Workshop (IMW). 2016, pp. 1–4. doi: 10.1109/IMW.2016.7495277.
-
[78] Hee-Dong Kim, Ho-Myoung An, Yujeong Seo, Yongjie Zhang, Jong Sun Park, and Tae Geun Kim. “Hydrogen passivation effects under negative bias temperature instability stress in metal/silicon-oxide/silicon-nitride/silicon-oxide/silicon capacitors for flash memories”. In: Microelectron. Reliab. 50.1 (2010), pp. 21–25. issn: 0026-2714. doi: 10.1016/j.microrel.2009.09.008.
-
[79] Christoph Wilhelmer, Mark E. Turiansky, Dominic Waldhoer, Lukas Cvitkovich, Chris G. Van de Walle, and Tibor Grasser. “Optical Properties of Vacancies in α-Al2 O3 from First Principles”. In: in preparation (2024).
-
[80] Sen Huang, Xinhua Wang, Yixu Yao, Kexin Deng, Yang Yang, Qimeng Jiang, Xinyu Liu, Fuqiang Guo, Bo Shen, Kevin J. Chen, and Yue Hao. “Threshold voltage instability in III-nitride heterostructure metal–insulator–semiconductor high-electron-mobility transistors: Characterization and interface engineering”. In: Appl. Phys. Rev. 11.2 (2024), p. 021325. doi: 10.1063/5.0179376.
-
[81] Sudipta Banerjee and Mukul Das. “A review of Al2 O3 as surface passivation material with relevant process technologies on c-Si solar cell”. In: Opt. Quantum Electron. 53.60 (2021). doi: 10.1007/s11082-020-02689-8.
-
[82] Dongsu Kim, Chong-Myeong Song, Su Jin Heo, Goeun Pyo, Dongha Kim, Ji Hwan Lee, Kyung-Ho Park, Shinbuhm Lee, Hyuk-Jun Kwon, and Jae Eun Jang. “Nonvolatile flash memory device with ferroelectric blocking layer via in situ ALD process”. In: Appl. Phys. Lett. 123.4 (2023), p. 042904. doi: 10.1063/5.0123608.
-
[83] Peng Zhao, Andrea Padovani, Pavel Bolshakov, Ava Khosravi, Luca Larcher, Paul K. Hurley, Christopher L. Hinkle, Robert M. Wallace, and Chadwin D. Young. “Understanding the Impact of Annealing on Interface and Border Traps in the Cr/HfO2 /Al2 O3 /MoS2 System”. In: ACS Appl. Electron. Mater. 1.8 (2019), pp. 1372–1377. doi: 10.1021/acsaelm.8b00103.
-
[84] Daobing Zeng, Ziyang Zhang, Zhongying Xue, Miao Zhang, Paul K. Chu, Yongfeng Mei, Ziao Tian, and Zengfeng Di. “Single-crystalline metal-oxide dielectrics for top-gate 2D transistors”. In: Nature 632 (2024), pp. 788–794. issn: 1476-4687. doi: 10.1038/s41586-024-07786-2.
-
[85] Lunjie Zeng, Dung Tran, Cheuk-Wai Tai, Gunnar Svensson, and Eva Olsson. “Atomic structure and oxygen deficiency of the ultrathin aluminium oxide barrier in Al/AlOx /Al Josephson junctions”. In: Sci. Rep. 6 (2016), p. 29679. doi: 10.1038/srep29679.
-
[86] E K Hollmann, O G Vendik, A G Zaitsev, and B T Melekh. “Substrates for high-Tc superconductor microwave integrated circuits”. In: Supercond. Sci. Technol. 7.9 (1994), p. 609. doi: 10.1088/0953-2048/7/9/001.
-
[87] Ka Law, Sujan Budhathoki, Smriti Ranjit, Franziska Martin, Arashdeep Thind, and Rohan Mishra. “Demonstration of nearly pinhole-free epitaxial aluminum thin films by sputter beam epitaxy”. In: Sci. Rep. 10 (2020), p. 18357. doi: 10.1038/s41598-020-74981-2.
-
[88] Mark E. Turiansky and Chris G. Van de Walle. “Dielectric Loss Due to Charged-Defect Acoustic Phonon Emission”. In: APL Quantum 1.2 (2024), p. 026114. issn: 2835-0103. doi: 10.1063/5.0205532.
-
[89] John M. Martinis, K. B. Cooper, R. McDermott, Matthias Steffen, Markus Ansmann, K. D. Osborn, K. Cicak, Seongshik Oh, D. P. Pappas, R. W. Simmonds, and Clare C. Yu. “Decoherence in Josephson Qubits from Dielectric Loss”. In: Phys. Rev. Lett. 95.21 (2005), p. 210503. doi: 10.1103/PhysRevLett.95.210503.
-
[90] J. Lisenfeld, C. Müller, J. H. Cole, P. Bushev, A. Lukashenko, A. Shnirman, and A. V. Ustinov. “Measuring the Temperature Dependence of Individual Two-Level Systems by Direct Coherent Control”. In: Phys. Rev. Lett. 105.23 (2010), p. 230504. doi: 10.1103/PhysRevLett.105.230504.
-
[91] Steffen Schlör, Jürgen Lisenfeld, Clemens Müller, Alexander Bilmes, Andre Schneider, David P. Pappas, Alexey V. Ustinov, and Martin Weides. “Correlating Decoherence in Transmon Qubits: Low Frequency Noise by Single Fluctuators”. In: Phys. Rev. Lett. 123.19 (2019), p. 190502. doi: 10.1103/PhysRevLett.123.190502.
-
[92] Seongshik Oh, Katarina Cicak, Jeffrey S. Kline, Mika A. Sillanpää Kevin D. Osborn, Jed D. Whittaker, Raymond W. Simmonds, and David P. Pappas. “Elimination of two level fluctuators in superconducting quantum bits by an epitaxial tunnel barrier”. In: Phys. Rev. B 74.10 (2006), p. 100502. doi: 10.1103/PhysRevB.74.100502.
-
[93] B. D. Evans and M. Stapelbroek. “Optical properties of the F + center in crystalline Al2 O3 ”. In: Phys. Rev. B 18.12 (1978), pp. 7089–7098. doi: 10.1103/PhysRevB.18.7089.
-
[94] V.A. Pustovarov, Aliev Vladimir, T.V. Perevalov, V.A. Gritsenko, and A. Eliseev. “Electronic structure of an oxygen vacancy in Al2 O3 from the results of Ab Initio quantum-chemical calculations and photoluminescence experiments”. In: J. Exp. Theor. Phys. 111 (2010), pp. 989–995. doi: 10.1134/S1063776110120113.
-
[95] Minseok Choi, Anderson Janotti, and Chris G. Van de Walle. “Native point defects and dangling bonds in α-Al2 O3 ”. In: J. Appl. Phys. 113.4 (2013), p. 044501. issn: 0021-8979. doi: 10.1063/1.4784114.
-
[96] Bruce D. Evans. “A review of the optical properties of anion lattice vacancies, and electrical conduction in α-Al2 O3 : their relation to radiation-induced electrical degradation”. In: J. Nucl. Mater. 219 (1995), pp. 202–223. issn: 0022-3115. doi: 10.1016/0022-3115(94)00529-X.
-
[97] Y Zorenko, T Zorenko, T Voznyak, A Mandowski, Qi Xia, M Batentschuk, and J Friedrich. “Luminescence of F+ and F centers in Al2 O3 -Y2 O3 oxide compounds”. In: IOP Conference Series: Materials Science and Engineering 15.1 (2010), p. 012060. doi: 10.1088/1757-899X/15/1/012060.
-
[98] N. D. M. Hine, K. Frensch, W. M. C. Foulkes, and M. W. Finnis. “Supercell size scaling of density functional theory formation energies of charged defects”. In: Phys. Rev. B 79.2 (2009), p. 024112. doi: 10.1103/PhysRevB.79.024112.
-
[99] Aditya Sundar and Liang Qi. “Stability of native point defects in α-Al2 O3 under aqueous electrochemical conditions”. In: J. Appl. Electrochem. 51 (2021). doi: 10.1007/s10800-020-01526-w.
-
[100] Andrew Venzie, Amanda Portoff, Michael Stavola, W. Beall Fowler, Jihyun Kim, Dae-Woo Jeon, Ji-Hyeon Park, and Stephen J. Pearton. “H trapping at the metastable cation vacancy in α-Ga2 O3 and α-Al2 O3 ”. In: Appl. Phys. Lett. 120.19 (2022), p. 192101. issn: 0003-6951. doi: 10.1063/5.0094707.
-
[101] Alina Kononov, Cheng-Wei Lee, Ethan P Shapera, and André Schleife. “Identifying native point defect configurations in α-alumina”. In: J. Condens. Matter Phys. 35.33 (2023), p. 334002. doi: 10.1088/1361-648X/acd3cf.
-
[102] Audrius Alkauskas, John L. Lyons, Daniel Steiauf, and Chris G. Van de Walle. “first principles Calculations of Luminescence Spectrum Line Shapes for Defects in Semiconductors: The Example of GaN and ZnO”. In: Phys. Rev. Lett. 109.26 (2012), p. 267401. doi: 10.1103/PhysRevLett.109.267401.
-
[103] Paul Adrien Maurice Dirac and Niels Henrik David Bohr. “The quantum theory of the emission and absorption of radiation”. In: Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 114.767 (1927), pp. 243–265. doi: 10.1098/rspa.1927.0039.
-
[104] J. Orear and E. Fermi. “Nuclear Physics: A Course Given by Enrico Fermi at the University of Chicago”. In: Midway reprints. University of Chicago Press, 1950. isbn: 9780226243658.
-
[105] B. Zwiebach. “Mastering Quantum Mechanics: Essentials, Theory, and Applications”. In: MIT Press, 2022. isbn: 9780262046138.
-
[106] M. Born and R. Oppenheimer. “Zur Quantentheorie der Molekeln”. In: Annalen der Physik 389.20 (1927), pp. 457–484. doi: 10.1002/andp.19273892002.
-
[107] Melvin Lax. “The Franck-Condon principle and its application to crystals”. In: J. Chem. Phys. 20.11 (1952), pp. 1752–1760. issn: 0021-9606. doi: 10.1063/1.1700283.
-
[108] M. Born and V. Fock. “Beweis des Adiabatensatzes”. In: Zeitschrift für Physik 51.3 (Mar. 1928), pp. 165–180. issn: 0044-3328. doi: 10.1007/BF01343193.
-
[109] V. P. Gupta. “Interaction of Radiation and Matter and Electronic Spectra”. In: Principles and Applications of Quantum Chemistry. Ed. by V.P. Gupta. Boston: Academic Press, 2016. Chap. 9, pp. 291–337. isbn: 978-0-12-803478-1. doi: 10.1016/B978-0-12-803478-1.00009-1.
-
[110] Kun Huang and A. Farrer Rhys. “Theory of light absorption and non-radiative transitions in F -centres”. In: Proc. R. Soc. A 204 (1950), pp. 406–423. doi: 10.1098/rspa.1950.0184.
-
[111] J. Franck and E. G. Dymond. “Elementary processes of photochemical reactions”. In: Trans. Faraday Soc. 21 (February 1926), pp. 536–542. doi: 10.1039/TF9262100536.
-
[112] Edward Condon. “A Theory of Intensity Distribution in Band Systems”. In: Phys. Rev. 28.6 (1926), pp. 1182–1201. doi: 10.1103/PhysRev.28.1182.
-
[113] R. Pässler. “Calculation of nonradiative multiphonon capture coefficients and ionization rates for neutral centres according to the static coupling scheme: I. Theory”. In: phys. status solidi (b) 68.1 (1975), pp. 69–79. doi: 10.1002/pssb.2220680105.
-
[114] Audrius Alkauskas, Qimin Yan, and Chris G. Van de Walle. “First-principles theory of nonradiative carrier capture via multiphonon emission”. In: Phys. Rev. B 90.7 (2014), p. 075202. doi: 10.1103/PhysRevB.90.075202.
-
[115] A. M. Stoneham. “Theory of Defects in Solids”. In: Oxford: Clarendon Press, 1975. isbn: 978-0-19-851331-5.
-
[116] Audrius Alkauskas, Matthew D. McCluskey, and Chris G. Van de Walle. “Tutorial: Defects in semiconductors—Combining experiment and theory”. In: J. Appl. Phys. 119.18 (2016), p. 181101. issn: 0021-8979. doi: 10.1063/1.4948245.
-
[117] Christoph Freysoldt, Blazej Grabowski, Tilmann Hickel, Jörg Neugebauer, Georg Kresse, Anderson Janotti, and Chris G. Van de Walle. “First-principles calculations for point defects in solids”. In: Rev. Mod. Phys. 86.1 (2014), pp. 253–305. doi: 10.1103/RevModPhys.86.253.
-
[118] Chris G. Van de Walle and Joerg Neugebauer. “First-principles calculations for defects and impurities: Applications to III-nitrides”. In: J. Appl. Phys. 95.8 (2004), pp. 3851–3879. doi: 10.1063/1.1682673.
-
[119] Michael A. Reshchikov and Hadis Morkoç “Luminescence properties of defects in GaN”. In: J. Appl. Phys. 97.6 (2005), p. 061301. issn: 0021-8979. doi: 10.1063/1.1868059.
-
[120] Jordan J. Markham. “Interaction of Normal Modes with Electron Traps”. In: Rev. Mod. Phys. 31.4 (1959), pp. 956–989. doi: 10.1103/RevModPhys.31.956.
-
[121] C. H. Henry and D. V. Lang. “Nonradiative capture and recombination by multiphonon emission in GaAs and GaP”. In: Phys. Rev. B 15.2 (1977), pp. 989–1016. doi: 10.1103/PhysRevB.15.989.
-
[122] J. H. Zheng, H. S. Tan, and S. C. Ng. “Theory of non-radiative capture of carriers by multiphonon processes for deep centres in semiconductors”. In: J. Phys.: Condens. Matter 6.9 (1994), p. 1695. doi: 10.1088/0953-8984/6/9/012.
-
[123] V.N. Abakumov, V.I. Perel, and I.N. Yassievich. “Nonradiative Recombination in Semiconductors”. In: ISSN. Elsevier Science, 1991. isbn: 9780444600820.
-
[124] Dominic Waldhör. “Potential energy surface approximations for nonradiative multiphonon charge transitions in oxide defects”. doi: 10.34726/hss.2018.58665. MA thesis. TU Wien, 2018.
-
[125] Jakob Michl, Alexander Grill, Dominic Waldhoer, Wolfgang Goes, Ben Kaczer, Dimitri Linten, Bertrand Parvais, Bogdan Govoreanu, Iuliana Radu, Michael Waltl, and Tibor Grasser. “Efficient Modeling of Charge Trapping at Cryogenic Temperatures—Part I: Theory”. In: IEEE Transactions on Electron Devices 68.12 (2021), pp. 6365–6371. doi: 10.1109/TED.2021.3116931.
-
[126] Gerhard Rzepa. “Efficient physical modeling of bias temperature instability”. PhD thesis. Technische Universität Wien, 2018. doi: 10.34726/hss.2018.57326.
-
[127] W. Shockley and W. T. Read. “Statistics of the Recombinations of Holes and Electrons”. In: Phys. Rev. 87.5 (1952), pp. 835–842. doi: 10.1103/PhysRev.87.835.
-
[128] J. W. Keister, J. E. Rowe, J. J. Kolodziej, H. Niimi, T. E. Madey, and G. Lucovsky. “Band offsets for ultrathin SiO2 and Si3 N4 films on Si(111) and Si(100) from photoemission spectroscopy”. In: J. Vac. Sci. Technol. 17.4 (1999), pp. 1831–1835. issn: 1071-1023. doi: 10.1116/1.590834.
-
[129] Franz Schanovsky. “Atomistic modeling in the context of the bias temperature instability”. PhD thesis. Technische Universität Wien, 2013. doi: 10.34726/hss.2013.28781.
-
[130] W. B. Fowler, J. K. Rudra, M. E. Zvanut, and F. J. Feigl. “Hysteresis and Franck-Condon relaxation in insulator-semiconductor tunneling”. In: Phys. Rev. B 41.12 (1990), pp. 8313–8317. doi: 10.1103/PhysRevB.41.8313.
-
[131] Bernhard Stampfer, Alexander Grill, and Michael Waltl. “Advanced Electrical Characterization of Single Oxide Defects Utilizing Noise Signals”. In: Noise in Nanoscale Semiconductor Devices. Ed. by Tibor Grasser. Springer International Publishing, 2020, 229–257. isbn: 978-3-030-37499-0. doi: 10.1007/978-3-030-37500-3_7.
-
[132] Henry Eyring. “The Activated Complex in Chemical Reactions”. In: J. Chem. Phys. 3.2 (1935), pp. 107–115. issn: 0021-9606. doi: 10.1063/1.1749604.
-
[133] M. J. Uren, M. J. Kirton, and S. Collins. “Anomalous telegraph noise in small-area silicon metal-oxide-semiconductor field-effect transistors”. In: Phys. Rev. B 37.14 (1988), pp. 8346–8350. doi: 10.1103/PhysRevB.37.8346.
-
[134] Hannes Jonsson, Greg Mills, and Karsten W. Jacobsen. “Nudged elastic band method for finding minimum energy paths of transitions”. In: Classical and Quantum Dynamics in Condensed Phase Simulations. World scientific, 1998. Chap. 16, pp. 385–404. doi: 10.1142/9789812839664_0016.
-
[135] R. Elber and M. Karplus. “A method for determining reaction paths in large molecules: Application to myoglobin”. In: Chemical Physics Letters 139.5 (1987), pp. 375–380. issn: 0009-2614. doi: 10.1016/0009-2614(87)80576-6.
-
[136] Graeme Henkelman, Blas P. Uberuaga, and Hannes Jónsson. “A climbing image nudged elastic band method for finding saddle points and minimum energy paths”. In: J. Chem. Phys. 113.22 (2000), pp. 9901–9904. doi: 10.1063/1.1329672.
-
[137] Graeme Henkelman and Hannes Jónsson. “Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points”. In: J. Chem. Phys. 113.22 (2000), pp. 9978–9985. issn: 0021-9606. doi: 10.1063/1.1323224.
-
[138] Risto M. Nieminen. “Supercell Methods for Defect Calculations”. In: Theory of Defects in Semiconductors. Ed. by David A. Drabold and Stefan K. Estreicher. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 29–68. doi: 10.1007/11690320_3.
-
[139] R. P. Messmer and G. D. Watkins. “Linear Combination of Atomic Orbital-Molecular Orbital Treatment of the Deep Defect Level in a Semiconductor: Nitrogen in Diamond”. In: Phys. Rev. Lett. 25.10 (1970), pp. 656–659. doi: 10.1103/PhysRevLett.25.656.
-
[140] G. A. Baraff and M. Schlüter. “New self-consistent approach to the electronic structure of localized defects in solids”. In: Phys. Rev. B 19.10 (1979), pp. 4965–4979. doi: 10.1103/PhysRevB.19.4965.
-
[141] C. G. Broyden. “The convergence of a class of double-rank minimization algorithms 1. general considerations”. In: J. Inst. Maths Applies 6.1 (1970), pp. 76–90. issn: 0272-4960. doi: 10.1093/imamat/6.1.76.
-
[142] R. Fletcher. “A new approach to variable metric algorithms”. In: Comput. J. 13.3 (1970), pp. 317–322. issn: 0010-4620. doi: 10.1093/comjnl/13.3.317.
-
[143] Donald Goldfarb. “A Family of Variable-Metric Methods Derived by Variational Means”. In: Math. Comput. 24.109 (1970), pp. 23–26. issn: 00255718, 10886842. doi: 10.1090/S0025-5718-1970-0258249-6.
-
[144] D. F. Shanno. “Conditioning of Quasi-Newton Methods for Function Minimization”. In: Math. Comput. 24.111 (1970), pp. 647–656. issn: 00255718, 10886842. doi: 10.1090/S0025-5718-1970-0274029-X.
-
[145] C W M Castleton, A Höglund, and S Mirbt. “Density functional theory calculations of defect energies using supercells”. In: Modelling Simul. Mater. Sci. Eng. 17.8 (2009), p. 084003. doi: 10.1088/0965-0393/17/8/084003.
-
[146] Hannu-Pekka Komsa, Tapio T. Rantala, and Alfredo Pasquarello. “Finite-size supercell correction schemes for charged defect calculations”. In: Phys. Rev. B 86.4 (2012), p. 045112. doi: 10.1103/PhysRevB.86.045112.
-
[147] Christoph Freysoldt, Jörg Neugebauer, and Chris G. Van de Walle. “Fully ab initio Finite-Size Corrections for Charged-Defect Supercell Calculations”. In: Phys. Rev. Lett. 102.1 (2009), p. 016402. doi: 10.1103/PhysRevLett.102.016402.
-
[148] Christoph Freysoldt, Jörg Neugebauer, and Chris G. Van de Walle. “Electrostatic interactions between charged defects in supercells”. In: phys. status solidi (b) 248.5 (2011), pp. 1067–1076. doi: 10.1002/pssb.201046289.
-
[149] Tomoya Gake, Yu Kumagai, Christoph Freysoldt, and Fumiyasu Oba. “Finite-size corrections for defect-involving vertical transitions in supercell calculations”. In: Phys. Rev. B 101.2 (2020), p. 020102. doi: 10.1103/PhysRevB.101.020102.
-
[150] Stefano Falletta, Julia Wiktor, and Alfredo Pasquarello. “Finite-size corrections of defect energy levels involving ionic polarization”. In: Phys. Rev. B 102.4 (2020), p. 041115. doi: 10.1103/PhysRevB.102.041115.
-
[151] Xie Zhang, Mark E. Turiansky, Lukas Razinkovas, Marek Maciaszek, Peter Broqvist, Qimin Yan, John L. Lyons, Cyrus E. Dreyer, Darshana Wickramaratne, Ádám Gali, Alfredo Pasquarello, and Chris G. Van de Walle. “First-principles calculations of defects and electron–phonon interactions: Seminal contributions of Audrius Alkauskas to the understanding of recombination processes”. In: J. Appl. Phys. 135.15 (2024), p. 150901. issn: 0021-8979. doi: 10.1063/5.0205525.
-
[152] Yu Kumagai. “Finite-size corrections to defect energetics along one-dimensional configuration coordinate”. In: Phys. Rev. B 107.22 (2023), p. L220101. doi: 10.1103/PhysRevB.107.L220101.
-
[153] J W Newsome, H W Heiser, A S Russell, and H C Stumpf. “ALUMINA PROPERTIES. Technical Paper No. 10, Second Revision”. In: (1960). doi: 10.2172/4037173.
-
[154] M. Lannoo and Jacques C. Bourgoin. In: Point Defects in Semiconductors II. Springer Berlin, Heidelberg, 1981. doi: doi.org/10.1007/978-3-642-81832-5.
-
[155] M. Ohring and S.P. Baker. “Materials Science of Thin Films: Deposition and Structure”. In: Elsevier Science, 2016. doi: 10.1016/B978-0-12-524975-1.X5000-9.
-
[156] Katharina Vollmayr, Walter Kob, and Kurt Binder. “Cooling-rate effects in amorphous silica: A computer-simulation study”. In: Phys. Rev. B 54.22 (1996), pp. 15808–15827. doi: 10.1103/PhysRevB.54.15808.
-
[157] N. W. Ashcroft and David C. Langreth. “Structure of Binary Liquid Mixtures. I”. In: Phys. Rev. 156.3 (1967), pp. 685–692. doi: 10.1103/PhysRev.156.685.
-
[158] Gonzalo Gutiérrez and Börje Johansson. “Molecular dynamics study of structural properties of amorphous Al2 O3 ”. In: Phys. Rev. B 65.10 (2002), p. 104202. doi: 10.1103/PhysRevB.65.104202.
-
[159] E Lorch. “Neutron diffraction by germania, silica and radiation-damaged silica glasses”. In: J. Phys. C: Solid State Phys 2.2 (1969), p. 229. doi: 10.1088/0022-3719/2/2/305.
-
[160] Søren Smidstrup, Troels Markussen, Pieter Vancraeyveld, Jess Wellendorff, Julian Schneider, Tue Gunst, Brecht Verstichel, Daniele Stradi, Petr A Khomyakov, Ulrik G Vej-Hansen, et al. “QuantumATK: an integrated platform of electronic and atomic-scale modelling tools”. In: J. Phys. Condens. Matter 32.1 (2019), p. 015901. doi: 10.1088/1361-648X/ab4007.
-
[161] Pier Luigi Silvestrelli, Nicola Marzari, David Vanderbilt, and Michele Parrinello. “Maximally-localized Wannier functions for disordered systems: Application to amorphous silicon”. In: Solid State Commun. 107.1 (1998), pp. 7–11. issn: 0038-1098. doi: 10.1016/S0038-1098(98)00175-6.
-
[162] Nicola Marzari, Arash A. Mostofi, Jonathan R. Yates, Ivo Souza, and David Vanderbilt. “Maximally localized Wannier functions: Theory and applications”. In: Rev. Mod. Phys. 84.4 (2012), pp. 1419–1475. doi: 10.1103/RevModPhys.84.1419.
-
[163] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov. “Electric Field Effect in Atomically Thin Carbon Films”. In: Science 306.5696 (2004), pp. 666–669. doi: 10.1126/science.1102896.
-
[164] C Dean, A Young, I Meric, Changgu Lee, Lei Wang, S Sorgenfrei, K Watanabe, Takashi Taniguchi, Phaly Kim, K Shepard, and James Hone. “Boron Nitride Substrates for High-Quality Graphene Electronics”. In: Nat. Nanotechnol. 5 (2010), pp. 722–6. doi: 10.1038/nnano.2010.172.
-
[165] Bhim Chamlagain, Qingsong Cui, Sagar Paudel, Mark Cheng, Pai-Yen Chen, and Zhixian Zhou. “Thermally Oxidized Two-dimensional TaS2 as a High-κ Gate Dielectric for MoS2 Field-Effect Transistors”. In: 2D Materials 4 (2017). doi: 10.1088/2053-1583/aa780e.
-
[166] Tianping Ying, Tongxu Yu, Yu-Shien Shiah, Changhua Li, Jiang Li, Yanpeng Qi, and Hideo Hosono. “High-Entropy van der Waals Materials Formed from Mixed Metal Dichalcogenides, Halides, and Phosphorus Trisulfides”. In: J. Am. Chem. Soc. 143.18 (2021), pp. 7042–7049. doi: 10.1021/jacs.1c01580.
-
[167] Fei Li, Shi-Kuan Sun, Yinjuan Chen, Takashi Naka, Takeshi Hashishin, Jun Maruyama, and Hiroya Abe. “Bottom-up synthesis of 2D layered high-entropy transition metal hydroxides”. In: Nanoscale Adv. 4.11 (2022), pp. 2468–2478. doi: 10.1039/D1NA00871D.
-
[168] Yulin Feng, Fang Wang, Zhengchun Yang, and John Wang. “Two dimensional hexagonal boron nitride (2D-hBN): Synthesis, properties and applications”. In: J. Mater. Chem. C 5 (2017), pp. 11992–12022. doi: 10.1039/C7TC04300G.
-
[169] P. Hohenberg and W. Kohn. “Inhomogeneous Electron Gas”. In: Phys. Rev. 136.3B (1964), B864–B871. doi: 10.1103/PhysRev.136.B864.
-
[170] Wolfram Koch and Max C. Holthausen. “The Hohenberg-Kohn Theorems”. In: A Chemist’s Guide to Density Functional Theory. John Wiley & Sons, Ltd, 2001. Chap. 4. isbn: 9783527600045. doi: 10.1002/3527600043.ch4.
-
[171] W. Kohn and L. J. Sham. “Self-Consistent Equations Including Exchange and Correlation Effects”. In: Phys. Rev. 140.4A (1965), A1133–A1138. doi: 10.1103/PhysRev.140.A1133.
-
[172] Wolfram Koch and Max C. Holthausen. “The Kohn-Sham Approach”. In: A Chemist’s Guide to Density Functional Theory. John Wiley & Sons, Ltd, 2001. Chap. 5. isbn: 9783527600045. doi: 10.1002/3527600043.ch5.
-
[173] Robert G Parr and Weitao Yang. “The Kohn–Sham method: Basic principles”. In: Density-Functional Theory of Atoms and Molecules. Oxford University Press, 1995. doi: 10.1093/oso/9780195092769.001.0001.
-
[174] Aron J. Cohen, Paula Mori-Sánchez, and Weitao Yang. “Challenges for Density Functional Theory”. In: Chem. Rev. 112.1 (2012), pp. 289–320. doi: 10.1021/cr200107z.
-
[175] John P. Perdew, Kieron Burke, and Matthias Ernzerhof. “Generalized Gradient Approximation Made Simple”. In: Phys. Rev. Lett. 77.18 (1996), pp. 3865–3868. doi: 10.1103/PhysRevLett.77.3865.
-
[176] Pedro Borlido, Jonathan Schmidt, Ahmad W. Huran, Fabien Tran, Miguel A. L. Marques, and Silvana Botti. “Exchange-correlation functionals for band gaps of solids: benchmark, reparametrization and machine learning”. In: Npj Comput. Mater. 6.1 (2020), p. 96. issn: 2057-3960. doi: 10.1038/s41524-020-00360-0.
-
[177] Axel D. Becke. “A new mixing of Hartree–Fock and local density-functional theories”. In: J. Chem. Phys. 98.2 (1993), pp. 1372–1377. issn: 0021-9606. doi: 10.1063/1.464304.
-
[178] J. C. Slater. “A Simplification of the Hartree-Fock Method”. In: Phys. Rev. 81.3 (1951), pp. 385–390. doi: 10.1103/PhysRev.81.385.
-
[179] Wolfram Koch and Max C. Holthausen. “The Quest for Approximate Exchange-Correlation Functionals”. In: A Chemist’s Guide to Density Functional Theory. John Wiley & Sons, Ltd, 2001. Chap. 6, pp. 65–91. isbn: 9783527600045. doi: 10.1002/3527600043.ch6.
-
[180] Manuel Guidon, Jürg Hutter, and Joost Van de Vondele. “Robust Periodic Hartree-Fock Exchange for Large-Scale Simulations Using Gaussian Basis Sets”. In: J. Chem. Theory Comput. 5.11 (2009), pp. 3010–3021. doi: 10.1021/ct900494g.
-
[181] Miguel A. L. Marques, Julien Vidal, Micael J. T. Oliveira, Lucia Reining, and Silvana Botti. “Density-based mixing parameter for hybrid functionals”. In: Phys. Rev. B 83.3 (2011), p. 035119. doi: 10.1103/PhysRevB.83.035119.
-
[182] Kurt Lejaeghere et al. “Reproducibility in density functional theory calculations of solids”. In: Science 351.6280 (2016), aad3000. doi: 10.1126/science.aad3000.
-
[183] Hideo Sambe and Ronald H. Felton. “A new computational approach to Slater’s SCF-Xα equation”. In: J. Chem. Phys. 62.3 (1975), pp. 1122–1126. issn: 0021-9606. doi: 10.1063/1.430555.
-
[184] Eric J. Bylaska. “Plane-Wave DFT Methods for Chemistry”. In: Annual Reports in Computational Chemistry. Ed. by David A. Dixon. Vol. 13. Elsevier, 2017. Chap. 5, pp. 185–228. doi: 10.1016/bs.arcc.2017.06.006.
-
[185] S. Goedecker, M. Teter, and J. Hutter. “Separable dual-space Gaussian pseudopotentials”. In: Phys. Rev. B 54.3 (1996), pp. 1703–1710. doi: 10.1103/PhysRevB.54.1703.
-
[186] Thomas D. Kühne, Marcella Iannuzzi, Mauro Del Ben, Vladimir V. Rybkin, Patrick Seewald, Frederick Stein, et al. “CP2K: An electronic structure and molecular dynamics software package - Quickstep: Efficient and accurate electronic structure calculations”. In: J. Chem. Phys. 152.19 (2020), p. 194103. doi: 10.1063/5.0007045.
-
[187] Gerald Lippert, Jörg Hütter, and Michelle Parinello. “A hybrid Gaussian and plane wave density functional scheme”. In: Molecular Physics 92.3 (1997), pp. 477–488. doi: 10.1080/002689797170220.
-
[188] Joost VandeVondele, Matthias Krack, Fawzi Mohamed, Michele Parrinello, Thomas Chassaing, and Jürg Hutter. “Quickstep: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach”. In: Comput. Phys. Commun. 167.2 (2005), pp. 103–128. issn: 0010-4655. doi: 10.1016/j.cpc.2004.12.014.
-
[189] Manuel Guidon, Juerg Hutter, and Joost VandeVondele. “Auxiliary Density Matrix Methods for Hartree-Fock Exchange Calculations”. In: J. Chem. Theory Comput. 6.8 (2010), pp. 2348–2364. doi: 10.1021/ct1002225.
-
[190] Loup Verlet. “Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules”. In: Phys. Rev. 159.1 (1967), pp. 98–103. doi: 10.1103/PhysRev.159.98.
-
[191] William C. Swope, Hans C. Andersen, Peter H. Berens, and Kent R. Wilson. “A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Application to small water clusters”. In: J. Chem. Phys. 76.1 (1982), pp. 637–649. issn: 0021-9606. doi: 10.1063/1.442716.
-
[192] Steve Plimpton. “Fast parallel algorithms for short-range molecular dynamics”. In: J. Comput. Phys 117.1 (1995), pp. 1–19. issn: 0021-9991. doi: doi.org/10.1006/jcph.1995.1039.
-
[193] Kun Zhou and Bo Liu. “Control techniques of molecular dynamics simulation”. In: Molecular Dynamics Simulation. Ed. by Kun Zhou and Bo Liu. Elsevier, 2022. Chap. 3, pp. 67–96. isbn: 978-0-12-816419-8. doi: 10.1016/B978-0-12-816419-8.00008-8.
-
[194] Diego Milardovich, Christoph Wilhelmer, Dominic Waldhoer, Lukas Cvitkovich, Ganesh Sivaraman, and Tibor Grasser. “Machine learning interatomic potential for silicon-nitride (Si3 N4 ) by active learning”. In: J. Chem. Phys. 158 (2023), p. 194802. issn: 0021-9606. doi: 10.1063/5.0146753.
-
[195] H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J. R. Haak. “Molecular dynamics with coupling to an external bath”. In: J. Chem. Phys. 81.8 (1984), pp. 3684–3690. issn: 0021-9606. doi: 10.1063/1.448118.
-
[196] Don S. Lemons and Anthony Gythiel. “Paul Langevin’s 1908 paper “On the Theory of Brownian Motion” [“Sur la théorie du mouvement brownien,” C. R. Acad. Sci. (Paris) 146, 530–533 (1908)]”. In: Am. J. Phys. 65.11 (1997), pp. 1079–1081. issn: 0002-9505. doi: 10.1119/1.18725.
-
[197] T. Schneider and E. Stoll. “Molecular-dynamics study of a three-dimensional one-component model for distortive phase transitions”. In: Phys. Rev. B 17.3 (1978), pp. 1302–1322. doi: 10.1103/PhysRevB.17.1302.
-
[198] Juraj Mavračić, Felix C. Mocanu, Volker L. Deringer, Gábor Csányi, and Stephen R. Elliott. “Similarity Between Amorphous and Crystalline Phases: The Case of TiO2 ”. In: J. Phys. Chem. Lett. 9.11 (2018), pp. 2985–2990. doi: 10.1021/acs.jpclett.8b01067.
-
[199] Adri C. T. van Duin, Siddharth Dasgupta, Francois Lorant, and William A. Goddard. “ReaxFF: A Reactive Force Field for Hydrocarbons”. In: J. Phys. Chem. A 105.41 (2001), pp. 9396–9409. doi: 10.1021/jp004368u.
-
[200] Albert P. Bartók, Mike C. Payne, Risi Kondor, and Gábor Csányi. “Gaussian Approximation Potentials: The Accuracy of Quantum Mechanics, without the Electrons”. In: Phys. Rev. Lett. 104.13 (2010), p. 136403. doi: 10.1103/PhysRevLett.104.136403.
-
[201] Thomas B. Blank, Steven D. Brown, August W. Calhoun, and Douglas J. Doren. “Neural network models of potential energy surfaces”. In: J. Chem. Phys. 103.10 (1995), pp. 4129–4137. issn: 0021-9606. doi: 10.1063/1.469597.
-
[202] K. T. Schütt, H. E. Sauceda, P.-J. Kindermans, A. Tkatchenko, and K.-R. Müller. “SchNet – A deep learning architecture for molecules and materials”. In: J. Chem. Phys. 148.24 (2018), p. 241722. issn: 0021-9606. doi: 10.1063/1.5019779.
-
[203] Alexander V. Shapeev. “Moment Tensor Potentials: A Class of Systematically Improvable Interatomic Potentials”. In: Multiscale Model. Sim. 14.3 (2016), pp. 1153–1173. doi: 10.1137/15M1054183.
-
[204] Albert P. Bartók, Risi Kondor, and Gábor Csányi. “On representing chemical environments”. In: Phys. Rev. B 87.18 (2013), p. 184115. doi: 10.1103/PhysRevB.87.184115.
-
[205] Volker L. Deringer and Gábor Csányi. “Machine learning based interatomic potential for amorphous carbon”. In: Phys. Rev. B 95.9 (2017), p. 094203. doi: 10.1103/PhysRevB.95.094203.
-
[206] Volker L. Deringer, Albert P. Bartók, Noam Bernstein, David M. Wilkins, Michele Ceriotti, and Gábor Csányi. “Gaussian Process Regression for Materials and Molecules”. In: Chem. Rev. 121.16 (2021). PMID: 34398616, pp. 10073–10141. doi: 10.1021/acs.chemrev.1c00022.
-
[207] Lukas Cvitkovich, Franz Fehringer, Christoph Wilhelmer, Diego Milardovich, Dominic Waldhör, and Tibor Grasser. “Machine Learning Force Field for Thermal Oxidation of Silicon”. In: J. Chem. Phys. 161.14 (2024), p. 144706. doi: 10.1063/5.0220091.
-
[208] Christoph Wilhelmer, Dominic Waldhoer, Markus Jech, Al-Moatasem Bellah El-Sayed, Lukas Cvitkovich, Michael Waltl, and Tibor Grasser. “Metastability of Negatively Charged Hydroxyl-E ′ Centers and their Potential Role in Positive Bias Temperature Instabilities”. In: ESSDERC 2022 - IEEE 52nd European Solid-State Device Research Conference (ESSDERC). 2022, pp. 376–379. doi: 10.1109/ESSDERC55479.2022.9947111.
-
[209] Adri C.T. Van Duin, Alejandro Strachan, Shannon Stewman, Qingsong Zhang, Xin Xu, and William A. Goddard. “ReaxFFSiO reactive force field for silicon and silicon oxide systems”. In: J. Phys. Chem. A 107.19 (2003), pp. 3803–3811. issn: 1089-5639. doi: 10.1021/jp0276303.
-
[210] Shinji Kohara and Kentaro Suzuya. “Intermediate-range order in vitreous SiO2 and GeO2 ”. In: J. Condens. Matter Phys. 17.5 (2005), S77–S86. doi: 10.1088/0953-8984/17/5/009.
-
[211] Badih El-Kareh. “Fundamentals of Semiconductor Processing Technology”. In: Boston: Springer US, 1995. isbn: 978-1-4613-5927-2. doi: 10.1007/978-1-4615-2209-6.
-
[212] S.R. Elliott. “Physics of Amorphous Materials”. In: Suny Series in Tantric Studies. Longman Scientific & Technical, 1990. isbn: 9780582021600.
-
[213] D.L. Price and J.M. Carpenter. “Scattering function of vitreous silica”. In: J. Non-Cryst. Solids 92.1 (1987), pp. 153–174. issn: 0022-3093. doi: 10.1016/S0022-3093(87)80366-6.
-
[214] Anna Kimmel, Peter Sushko, Alexander Shluger, and Gennadi Bersuker. “Positive and Negative Oxygen Vacancies in Amorphous Silica”. In: ECS Trans. 19.2 (2009), pp. 3–17. doi: 10.1149/1.3122083.
-
[215] Yue-Yang Liu, Feilong Liu, Runsheng Wang, Jun-Wei Luo, Xiangwei Jiang, Ru Huang, Shu-Shen Li, and Lin-Wang Wang. “Characterizing the Charge Trapping across Crystalline and Amorphous Si/SiO2/HfO2 Stacks from First-Principle Calculations”. In: Phys. Rev. Applied 12.6 (2019), p. 064012. doi: 10.1103/PhysRevApplied.12.064012.
-
[216] Yue-Yang Liu, Fan Zheng, Xiangwei Jiang, Jun-Wei Luo, Shu-Shen Li, and Lin-Wang Wang. “Ab Initio Investigation of Charge Trapping Across the Crystalline-Si–Amorphous-SiO2 Interface”. In: Phys. Rev. Applied 11.4 (2019), p. 044058. doi: 10.1103/PhysRevApplied.11.044058.
-
[217] Peter E. Blöchl. “First-principles calculations of defects in oxygen-deficient silica exposed to hydrogen”. In: Phys. Rev. B 62.10 (2000), pp. 6158–6179. doi: 10.1103/PhysRevB.62.6158.
-
[218] Julien Godet and Alfredo Pasquarello. “Ab initio study of charged states of H in amorphous SiO2”. In: Microelectron. Eng. 80 (2005). 14th biennial Conference on Insulating Films on Semiconductors, pp. 288–291. issn: 0167-9317. doi: 10.1016/j.mee.2005.04.082.
-
[219] David Z. Gao, Jack Strand, Manveer S. Munde, and Alexander L. Shluger. “Mechanisms of Oxygen Vacancy Aggregation in SiO2 and HfO2”. In: Front. Phys. 7.43 (2019). doi: 10.3389/fphy.2019.00043.
-
[220] R. A. B. Devine and J. Arndt. “Defect pair creation through ultraviolet radiation in dense, amorphous SiO2”. In: Phys. Rev. B 42.4 (1990), pp. 2617–2620. doi: 10.1103/PhysRevB.42.2617.
-
[221] G. Buscarino and S. Agnello. “Experimental evidence of E′γ centers generation from oxygen vacancies in a-SiO2”. In: J. Non-Cryst. Solids 353.5 (2007), pp. 577–580. issn: 0022-3093. doi: 10.1016/j.jnoncrysol.2006.12.031.
-
[222] C. Parks, B. Robinson, H. Leary, K. Childs, and G. Coyle. “The chemical interface of microwave plasma deposited SiO2 films”. In: MRS Proceedings 105 (1987), pp. 133–138. doi: 10.1557/PROC-105-133.
-
[223] N. H. Nickel. “Hydrogen diffusion through silicon/silicon dioxide interfaces”. In: J. Vac. Sci. Technol. B 18.3 (2000), pp. 1770–1772. doi: 10.1116/1.591469.
-
[224] Dominic Waldhör, Al-Moatasem El-Sayed, Yannick Wimmer, Michael Waltl, and Tibor Grasser. “Atomistic modeling of oxide defects”. In: Noise in nanoscale semiconductor devices. Ed. by Tibor Grasser. Springer International Publishing, 2020, pp. 609–648. isbn: 978-3-030-37499-0. doi: 10.1007/978-3-030-37500-3_18.
-
[225] E. Bersch, M. Di, S. Consiglio, R. D. Clark, G. J. Leusink, and A. C. Diebold. “Complete band offset characterization of the HfO2 /SiO2 /Si stack using charge corrected X-ray photoelectron spectroscopy”. In: J. Appl. Phys. 107.4 (2010), p. 043702. doi: 10.1063/1.3284961.
-
[226] T. E. Cook, C. C. Fulton, W. J. Mecouch, K. M. Tracy, R. F. Davis, E. H. Hurt, G. Lucovsky, and R. J. Nemanich. “Measurement of the band offsets of SiO2 on clean n- and p-type GaN(0001)”. In: J. Appl. Phys. 93.7 (2003), pp. 3995–4004. doi: 10.1063/1.1559424.
-
[227] Eric Bersch, Sylvie Rangan, Robert Allen Bartynski, Eric Garfunkel, and Elio Vescovo. “Band offsets of ultrathin high-κ oxide films with Si”. In: Phys. Rev. B 78.8 (2008), p. 085114. doi: 10.1103/PhysRevB.78.085114.
-
[228] Alejandro J. Garza and Gustavo E. Scuseria. “Predicting Band Gaps with Hybrid Density Functionals”. In: J. Phys. Chem. Lett. 7.20 (2016), pp. 4165–4170. doi: 10.1021/acs.jpclett.6b01807.
-
[229] Tae-Hyeon Kil and Koji Kita. “Anomalous band alignment change of SiO2/4H–SiC (0001) and (000–1) MOS capacitors induced by NO-POA and its possible origin”. In: Appl. Phys. Lett. 116.12 (2020), p. 122103. doi: 10.1063/1.5135606.
-
[230] R. Mahapatra, Amit K. Chakraborty, A. B. Horsfall, N. G. Wright, G. Beamson, and Karl S. Coleman. “Energy-band alignment of HfO2/SiO2/SiC gate dielectric stack”. In: Appl. Phys. Lett. 92.4 (2008), p. 042904. doi: 10.1063/1.2839314.
-
[231] V. V. Afanas’ev, M. Bassler, G. Pensl, M. J. Schulz, and E. Stein von Kamienski. “Band offsets and electronic structure of SiC/SiO2 interfaces”. In: J. Appl. Phys. 79.6 (1996), pp. 3108–3114. doi: 10.1063/1.361254.
-
[232] A.J. Lelis and T.R. Oldham. “Time dependence of switching oxide traps”. In: IEEE Trans. Nucl. Sci. 41.6 (1994), pp. 1835–1843. doi: 10.1109/23.340515.
-
[233] B. E. Deal and A. S. Grove. “General Relationship for the Thermal Oxidation of Silicon”. In: J. Appl. Phys. 36.12 (1965), pp. 3770–3778. doi: 10.1063/1.1713945.
-
[234] J. Franco, H. Arimura, J. Marneffe, Z. Wu, A. Vandooren, L. Ragnarsson, E. Dentoni Litta, N. Horiguchi, K. Croes, D. Linten, V. Afanas’ev, T. Grasser, and B. Kaczer. “Low-temperature atomic and molecular hydrogen anneals for enhanced chemical SiO2 IL quality in low thermal budget RMG stacks”. In: 2021 IEEE International Electron Devices Meeting (IEDM). 2021, pp. 31.4.1–31.4.4. doi: 10.1109/IEDM19574.2021.9720657.
-
[235] Michael Waltl, Wolfgang Goes, Karina Rott, Hans Reisinger, and Tibor Grasser. “A single-trap study of PBTI in SiON nMOS transistors: Similarities and differences to the NBTI/pMOS case”. In: 2014 IEEE International Reliability Physics Symposium. 2014, XT.18.1–XT.18.5. doi: 10.1109/IRPS.2014.6861195.
-
[236] Alejandro Campos-Cruz, Guillermo Espinosa-Flores-Verdad, Alfonso Torres-Jacome, and Esteban Tlelo-Cuautle. “On the Prediction of the Threshold Voltage Degradation in CMOS Technology Due to Bias-Temperature Instability”. In: Electronics 7.12 (2018). issn: 2079-9292. doi: 10.3390/electronics7120427.
-
[237] Harikrishnan Ravichandran, Theresia Knobloch, Shiva Subbulakshmi Radhakrishnan, Christoph Wilhelmer, et al. “A stochastic encoder using point defects in two-dimensional materials”. In: Nat. Commun. 15.1 (2024), p. 10562. doi: 10.1038/s41467-024-54283-1.
-
[238] Sujuan Ding, Fang Lin, and Chuanhong Jin. “Quantify point defects in monolayer tungsten diselenide”. In: Nanotechnology 32.25 (2021), p. 255701. doi: 10.1088/1361-6528/abeeb2.
-
[239] Lesheng Li and Emily A. Carter. “Defect-Mediated Charge-Carrier Trapping and Nonradiative Recombination in WSe2 Monolayers”. In: J. Am. Chem. Soc. 141.26 (2019), pp. 10451–10461. doi: 10.1021/jacs.9b04663.
-
[240] Mit H. Naik and Manish Jain. “CoFFEE: Corrections For Formation Energy and Eigenvalues for charged defect simulations”. In: Comput. Phys. Commun. 226 (2018), pp. 114–126. issn: 0010-4655. doi: 10.1016/j.cpc.2018.01.011.
-
[241] Evgueni A. Chagarov and Andrew C. Kummel. “Ab initio molecular dynamics simulations of properties of a-Al2 O3 /vacuum and a-ZrO2 /vacuum vs a-Al2 O3 /Ge(100)(2×1) and a-ZrO2 /Ge(100)(2×1) interfaces”. In: J. Chem. Phys. 130.12 (2009), p. 124717. issn: 0021-9606. doi: 10.1063/1.3078035.
-
[242] Alain E. Kaloyeros, Youlin Pan, Jonathan Goff, and Barry Arkles. “Review—Silicon Nitride and Silicon Nitride-Rich Thin Film Technologies: State-of-the-Art Processing Technologies, Properties, and Applications”. In: ECS J. Solid State Sci. Technol. 9.6 (2020), p. 063006. doi: 10.1149/2162-8777/aba447.
-
[243] Bing K. Yen, Richard L. White, Robert J. Waltman, Qing Dai, Dolores C. Miller, Andrew J. Kellock, et al. “Microstructure and properties of ultrathin amorphous silicon nitride protective coating”. In: J. Vac. Sci. Technol. 21.6 (2003), pp. 1895–1904. issn: 0734-2101. doi: 10.1116/1.1615974.
-
[244] T. Aiyama, T. Fukunaga, K. Niihara, T. Hirai, and K. Suzuki. “An X-ray diffraction study of the amorphous structure of chemically vapor-deposited silicon nitride”. In: J. Non-Cryst. Solids 33.2 (1979), pp. 131–139. issn: 0022-3093. doi: 10.1016/0022-3093(79)90043-7.
-
[245] L. E. Hintzsche, C. M. Fang, T. Watts, M. Marsman, G. Jordan, M. W. P. E. Lamers, A. W. Weeber, and G. Kresse. “Density functional theory study of the structural and electronic properties of amorphous silicon nitrides: Si3 N4−x :H”. In: Phys. Rev. B 86.23 (2012), p. 235204. doi: 10.1103/PhysRevB.86.235204.
-
[246] Luigi Giacomazzi and P. Umari. “First-principles investigation of electronic, structural, and vibrational properties of a-Si3 N4 ”. In: Phys. Rev. B 80.14 (2009), p. 144201. doi: 10.1103/PhysRevB.80.144201.
-
[247] R. Kärcher, L. Ley, and R. L. Johnson. “Electronic structure of hydrogenated and unhydrogenated amorphous SiNx (0 ≤ x ≤ 1.6): A photoemission study”. In: Phys. Rev. B 30.4 (1984), pp. 1896–1910. doi: 10.1103/PhysRevB.30.1896.
-
[248] Kousik Midya, Subhabrata Dhar, and Anil Kottantharayil. “Trap characterization of silicon nitride thin films by a modified trap spectroscopy technique”. In: J. Appl. Phys. 114.15 (2013), p. 154101. issn: 0021-8979. doi: 10.1063/1.4825049.
-
[249] A. Suhane, A. Arreghini, R. Degraeve, G. Van den bosch, L. Breuil, M. B. Zahid, M. Jurczak, K. De Meyer, and J. Van Houdt. “Validation of Retention Modeling as a Trap-Profiling Technique for SiN-Based Charge-Trapping Memories”. In: IEEE Electron Device Lett. 31.1 (2010), pp. 77–79. doi: 10.1109/LED.2009.2035718.
-
[250] Nidia Gabaldon Limas and Thomas A. Manz. “Introducing DDEC6 atomic population analysis: part 4. Efficient parallel computation of net atomic charges, atomic spin moments, bond orders, and more”. In: RSC Adv.. 8 (5 2018), pp. 2678–2707. doi: 10.1039/C7RA11829E.
-
[251] Sunghyun Kim, Ji-Sang Park, and Aron Walsh. “Identification of Killer Defects in Kesterite Thin-Film Solar Cells”. In: ACS Energy Lett. 3.2 (2018), pp. 496–500. doi: 10.1021/acsenergylett.7b01313.
-
[252] Elisa Vianello, Francesco Driussi, L. Perniola, Gabriel Molas, Jean-Philippe Colonna, B. De Salvo, and Luca Selmi. “Explanation of the Charge-Trapping Properties of Silicon Nitride Storage Layers for NVM Devices Part I: Experimental Evidences From Physical and Electrical Characterizations”. In: IEEE Trans. Electron Devices 58.8 (2011), pp. 2483–2489. doi: 10.1109/TED.2011.2140116.
-
[253] Toshihiko Iwao, Tsung-Hsuan Yang, Gyeong S. Hwang, and Peter L. G. Ventzek. “Microkinetic based growth and property modeling of plasma enhanced atomic layer deposition silicon nitride thin film”. In: J. Vac. Sci. Technol. A 41.3 (2023), p. 032410. issn: 0734-2101. doi: 10.1116/6.0002499.
-
[254] Yongling Ren, Klaus J. Weber, Natalita M. Nursam, and Da Wang. “Effect of deposition conditions and thermal annealing on the charge trapping properties of SiNx films”. In: Appl. Phys. Lett. 97.20 (2010), p. 202907. issn: 0003-6951. doi: 10.1063/1.3518488.
-
[255] Hisatsugu Kurita, Masataka Nakamura, Hayato Miyagawa, and Yoshiaki Kamigaki. “Effect of N2 -Anneal Temperature on Silicon Nitride Film: (I) Time-Dependent Dielectric Breakdown and ESR Evaluations”. In: ECS Trans. 108.4 (2022), p. 69. doi: 10.1149/10804.0069ecst.
-
[256] Shu-Ya Lin. “Hydrogen-induced electronic states and vibrational modes in hydrogenated amorphous silicon nitride”. In: Thin Solid Films 395.1 (2001), pp. 101–104. issn: 0040-6090. doi: 10.1016/S0040-6090(01)01221-4.
-
[257] M. Naich, G. Rosenman, Ya. Roizin, and M. Molotskii. “Exoelectron emission studies of trap spectrum in ultrathin amorphous Si3 N4 films”. In: Solid-State Electron. 48.3 (2004), pp. 477–482. issn: 0038-1101. doi: 10.1016/j.sse.2003.08.008.
-
[258] Yu.N. Novikov and V.A. Gritsenko. “Multiphonon trap ionization mechanism in amorphous SiNx ”. In: J. Non-Cryst. Solids 582 (2022), p. 121442. issn: 0022-3093. doi: 10.1016/j.jnoncrysol.2022.121442.
-
[259] G. D. Wilk, R. M. Wallace, and J. M. Anthony. “High-κ gate dielectrics: Current status and materials properties considerations”. In: J. Appl. Phys. 89.10 (2001), pp. 5243–5275. issn: 0021-8979. doi: 10.1063/1.1361065.
-
[260] Andrea Padovani, Luca Larcher, Vincenzo Della Marca, Paolo Pavan, Hokyung Park, and Gennadi Bersuker. “Charge trapping in alumina and its impact on the operation of metal-alumina-nitride-oxide-silicon memories: Experiments and simulations”. In: J. Appl. Phys. 110.1 (2011), p. 014505. doi: 10.1063/1.3602999.
-
[261] R.W.G. Wyckoff. In: Crystal Structures. Interscience publication Bd. 2. John Wiley, 1967.
-
[262] R. R. Newnham and Y. M. de Haan. “Refinement of the α Al2 O3 , Ti2 O3 , V2 O3 and Cr2 O3 structures”. In: Zeitschrift für Kristallographie 117.2-3 (1962), pp. 235–237. doi: doi:10.1524/zkri.1962.117.2-3.235.
-
[263] Jiraroj T-Thienprasert Teeraphat Watcharatharapong and Sukit Limpijumnong. “Theoretical Study of Optical Properties of Native Point Defects in α-Al2 O3 ”. In: Integr. Ferroelectr. 156.1 (2014), pp. 79–85. doi: 10.1080/10584587.2014.906290.
-
[264] A.I. Surdo, V.S. Kortov, V.A. Pustovarov, and V.Yu. Yakovlev. “UV luminescence of F -centers in aluminum oxide”. In: phys. status solidi (c) 2.1 (2005), pp. 527–530. doi: 10.1002/pssc.200460225.
-
[265] Sang-il Choi and Takao Takeuchi. “Electronic States of F -Type Centers in Oxide Crystals: A New Picture”. In: Phys. Rev. Lett. 50.19 (1983), pp. 1474–1477. doi: 10.1103/PhysRevLett.50.1474.
-
[266] K. H. Lee and J. H. Crawford. “Electron centers in single-crystal Al2 O3 ”. In: Phys. Rev. B 15.8 (1977), pp. 4065–4070. doi: 10.1103/PhysRevB.15.4065.
-
[267] M.L. Chithambo, A.N. Nyirenda, A.A. Finch, and N.S. Rawat. “Time-resolved optically stimulated luminescence and spectral emission features of α-Al2 O3 :C”. In: Phys. B: Condens. Matter. 473 (2015), pp. 62–71. issn: 0921-4526. doi: 10.1016/j.physb.2015.05.034.
-
[268] S.Y. La, R.H. Bartram, and R.T. Cox. “The F + center in reactor-irradiated aluminum oxide”. In: J. Phys. Chem. Sol. 34.6 (1973), pp. 1079–1086. issn: 0022-3697. doi: 10.1016/S0022-3697(73)80016-2.
-
[269] Javier Carrasco, Nuria Lopez, Carmen Sousa, and Francesc Illas. “First-principles study of the optical transitions of F centers in the bulk and on the (0001) surface of α-Al2 O3 ”. In: Phys. Rev. B 72.5 (2005), p. 054109. doi: 10.1103/PhysRevB.72.054109.
-
[270] D. Liu and J. Robertson. “Oxygen vacancy levels and interfaces of Al2 O3 ”. In: Microelectron. Eng. 86.7 (2009), pp. 1668–1671. issn: 0167-9317. doi: 10.1016/j.mee.2009.03.011.
-
[271] A.I. Surdo and V.S. Kortov. “Exciton mechanism of energy transfer to F -centers in dosimetric corundum crystals”. In: Radiation Measurements 38.4 (2004), pp. 667–671. issn: 1350-4487. doi: 10.1016/j.radmeas.2003.12.001.
-
[272] Ryogo Kubo and Yutaka Toyozawa. “Application of the Method of Generating Function to Radiative and Non-Radiative Transitions of a Trapped Electron in a Crystal”. In: Prog. Theor. Phys. 13.2 (1955), pp. 160–182. issn: 0033-068X. doi: 10.1143/PTP.13.160.
-
[273] Toru Miyakawa and D. L. Dexter. “Phonon Sidebands, Multiphonon Relaxation of Excited States, and Phonon-Assisted Energy Transfer between Ions in Solids”. In: Phys. Rev. B 1.7 (1970), pp. 2961–2969. doi: 10.1103/PhysRevB.1.2961.
-
[274] G Davies. “The Jahn-Teller effect and vibronic coupling at deep levels in diamond”. In: Rep. Prog. Phys. 44.7 (1981), p. 787. doi: 10.1088/0034-4885/44/7/003.
-
[275] Audrius Alkauskas, Bob B Buckley, David D Awschalom, and Chris G Van de Walle. “First-principles theory of the luminescence lineshape for the triplet transition in diamond NV centres”. In: New J. Phys. 16.7 (2014), p. 073026. doi: 10.1088/1367-2630/16/7/073026.
-
[276] Stefano Falletta and Alfredo Pasquarello. “Polarons free from many-body self-interaction in density functional theory”. In: Phys. Rev. B 106.12 (2022), p. 125119. doi: 10.1103/PhysRevB.106.125119.
-
[277] Joost Van de Vondele and Jürg Hutter. “Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases”. In: J. Chem. Phys. 127.11 (2007), p. 114105. doi: 10.1063/1.2770708.
-
[278] A. R. Elmaslmane, M. B. Watkins, and K. P. McKenna. “First-Principles Modeling of Polaron Formation in TiO2 Polymorphs”. In: J. Chem. Theory Comput. 14.7 (2018), pp. 3740–3751. doi: 10.1021/acs.jctc.8b00199.
-
[279] Roger H. French. “Electronic Band Structure of Al2 O3 , with Comparison to AlON and AlN”. In: J. Am. Chem. Soc. 73.3 (1990), pp. 477–489. doi: 10.1111/j.1151-2916.1990.tb06541.x.