« PreviousUpNext »Contents

Previous: 2 Physics Top: 2 Physics Next: 3 Models

The force due to EM is modeled in continuum mechanical problems as described above by

where the is called effective valence or effective charge. The EM induced force on an atomic scale was theoretically studied by Huntington et al. [64]. They used some simplifications, such as the defects are decoupled from the lattice, the electrons are scattered by atoms only, and the creation or annihilation of phonons is neglected. Under these assumptions the -directional momentum transferred from the scattered electrons to the defects per time is given by

where is the distribution function of the electrons and is the transition probability per unit time of an electron in state to jump into state By separating the two energies’ differentiation into two integrals, interchanging the primed and the unprimed variables of the second integration, and employing the substitution

equation (2.21) can be written in the form

where is the relaxation time of the electrons. As a common assumption for metals, the relaxation time is taken to be constant over all states describes the electron distribution at equilibrium and integrates to zero. The current density in the -direction can be expressed by [3, 78]

By comparison of (2.21) and (2.24) the relation

is obtained. With the density of defects , the density of the conducting electrons and the contribution of the defects to the resistivity the force can be expressed by

where the density of the conducting electrons is substituted by , where is the density of the lattice atoms, and is the number of conducting electrons per lattice atom. For an ion at a saddle point between two vacant position the interaction of the ion and the conducting electron is the strongest, whereas the interaction at lattice points is the weakest. On the way from one lattice point to an other the interaction varies and as this position dependent interaction is not known, Huntington et al. [64] chose a sinusoidal form leading to

where is the jump distance, and is the maximum force. For a jump path with an angle between the path and the force , the energy required for a jump can be calculated by

The net flow of atoms due to EM in the current direction is the sum of the probabilities of jumps (along the paths j) times the jump length in the current direction [78].

is the atomic vibration frequency, the concentration of the ions in the metal, and the saddle point energy including the formation energy and the motion energy of vacancies. This equation can be linearized and rewritten to

with being the diffusion coefficient.

The resulting equation (2.30) differs form the Nernst-Einstein relation by the factor 2 in the denominator, which is the average of the chosen position dependent interaction of the conducting electrons and the ions on their path from one lattice point to an other. In addition to the force due to the electron wind also the force due to the electric potential gradient has to be included, leading to the effective charge

and to the effective valence Using the Einstein relation for field assisted diffusion in a potential the drift velocity can be expressed by [94]

This was the first quantum mechanical expression of the EM induced ion velocity. Within the ballistic model [96] it was shown that there is a linear relation between the EM induced flux and the current density.

For a quantum mechanical force calculation another equation was developed and widely used, based on the scattering states of the conducting electrons [15, 117, 124, 132, 128] obtained from the linear response theory of Kubo [84],

The considered atom is located at position and is the effective one-electron
potential. is the electric field, is the volume of the unit cell, is the relaxation time of the scattered
electron, is the -dependent Fermi velocity, and is the wave function of the electron,
which can be calculated with the Schröedinger equation [37]

In (2.34) the first part on the right hand side has the meaning of the effective charge, has the form of a tensor of second order, and reflects the possible dependence of the crystal orientation on the current direction of the EM force especially for non-cubic crystal metals (e.g. zinc) [59]. For periodic structures the integral (2.34) is always equal 0. The reason is the symmetry of the wave functions regarding the crystal wave vector

making the result of the integration over space an even function in due to the fact that the potential is a real valued function,

Furthermore, the Fermi velocity is an odd function in leading to a vanishing result of the integration over the Fermi sphere. This causes
the necessity of calculations of nonperiodic problems. For bulk materials the calculations were performed using the pseudo potential and the KKR method [129, 130, 131, 144, 145]. et al. [15, 111, 112] showed how a calculation for a
single adatom can be carried out by employing the LKKR method [97, 98]. They used the muffin-tin approximation by confining the atomic potential to non-overlapping spheres with a constant interstitial potential [101]. The
advantage of this method is the simplicity and the computational economy payed by an insufficient description of valence electron potentials in covalent open structures [147] compared to full potential calculations [105] The electron
wave function was defined by

where is a spherical harmonic [150], is the coefficient from the spherical wave expansion, evaluated by the LKKR calculation, and is the spherical solution of the Schrödinger equation [141], which can be expressed as

Here is a spherical Bessel function [150], is the spherical Henkel function [150] of the first kind, and characterizes the scattering phase shift of each atom. The results show that the effective valance of an adatom is strongly dependent on the height of the atom relative to the metal surface (c.f. Figure 2.1). This dependence is quite well described by a simple ballistic model, if the reduced electron density relative to the bulk is taken into account [15]. This calculation was extended to islands of adatoms on a substrate modeled by the jellium model showing that the distance to islands has a huge impact on the effective valance of single adatoms [113].

« PreviousUpNext »ContentsPrevious: 2 Physics Top: 2 Physics Next: 3 Models