« PreviousUpNext »Contents
Previous: 15.2 Outlook    Next: List of Publications

Bibliography

  • [1] G. E. Moore. “Cramming More Components Onto Integrated Circuits”. In: Proceedings of the IEEE 86.1 (1998), pp. 82–85.

  • [2] G. Wilk, R. Wallace, and J. Anthony. “High–K Gate Dielectrics: Current Status and Materials Properties Considerations”. In: Journal of Applied Physics 89 (Jan. 2001).

  • [3] J. Robertson. “High Dielectric Constant Oxides”. In: European Physical Journal Applied Physics 28 (3 Dec. 2004), pp. 265–291. issn: 1286-0050.

  • [4] H. Byoung, K. Laegu, Q. Wen-Jie, N. Renee, J. Yongjoo, O. Katsunori, and J. Lee. “Ultrathin Hafnium Oxide with Low Leakage and Excellent Reliability for Alternative Gate Dielectric Application”. In: Proceedings of the International Electron Devices Meeting (IEDM). Dec. 1999, pp. 133–136.

  • [5] E. Gusev, D. Buchanan, E. Cartier, A. Kumar, D. DiMaria, S. Guha, A. Callegari, S. Zafar, P. Jamison, D. Neumayer, M. Copel, M. Gribelyuk, H. Okorn-Schmidt, C. D’Emic, P. Kozlowski, K. Chan, N. Bojarczuk, L.-A. R. P. Ronsheim, K. Rim, R. Fleming, A. Mocuta, and A. Ajmera. “Ultrathin High-K Gate Stacks for Advanced CMOS Devices”. In: Proceedings of the International Electron Devices Meeting (IEDM). Dec. 2001, pp. 20.1.1–20.1.4.

  • [6] E. Cartier, A. Kerber, T. Ando, M. M. Frank, K. Choi, S. Krishnan, B. Linder, K. Zhao, F. Monsieur, J. Stathis, and V. Narayanan. “Fundamental Aspects of HfO2-based High-k Metal Gate Stack Reliability and Implications on Tinv-scaling”. In: Proceedings of the International Electron Devices Meeting (IEDM). Dec. 2011, pp. 18.4.1–18.4.4.

  • [7] L. Witters, S. Takeoka, S. Yamaguchi, A. Hikavyy, D. Shamiryan, M. Cho, T. Chiarella, L. Å. Ragnarsson, R. Loo, C. Kerner, Y. Crabbe, J. Franco, J. Tseng, W. E. Wang, E. Rohr, T. Schram, O. Richard, H. Bender, S. Biesemans, P. Absil, and T. Hoffmann. “8 Å; Tinv Gate-First Dual Channel Technology achieving Low-Vt High Performance CMOS”. In: IEEE Symposium on VLSI Technology Digest of Technical Papers. June 2010, pp. 181–182.

  • [8] S. Borkar. “Microarchitecture and Design Challenges for Gigascale Integration”. In: Proceedings of the 37th Annual IEEE/ACM International Symposium on Microarchitecture. MICRO 37. IEEE Computer Society, 2004, pp. 3–3.

  • [9] System-on-Chip Test Architectures. Morgan Kaufmann, 2008.

  • [10] Handbook of Algorithms for Physical Design Automation. CRC Press, 2008.

  • [11] M. Nourani and A. Radhakrishnan. “Testing On-Die Process Variation in Nanometer VLSI”. In: IEEE Design Test of Computers 23.6 (June 2006), pp. 438–451. issn: 0740-7475.

  • [12] Microelectronic Test Structures for CMOS Technology. Springer, 2011.

  • [13] A. Asenov, A. R. Brown, J. H. Davies, S. Kaya, and G. Slavcheva. “Simulation of Intrinsic Parameter Fluctuations in Decananometer and Nanometer-Scale MOSFETs”. In: IEEE Transactions on Electron Devices 50.9 (Sept. 2003), pp. 1837–1852. issn: 0018-9383.

  • [14] H. Dadgour, K. Endo, V. De, and K. Banerjee. “Modeling and analysis of grain-orientation effects in emerging metal-gate devices and implications for SRAM reliability”. In: Proceedings of the International Electron Devices Meeting (IEDM). Dec. 2008, pp. 1–4.

  • [15] T. Mizuno, J. Okamura, and A. Toriumi. “Experimental Study Of Threshold Voltage Fluctuations Using An 8k MOSFET’s Array”. In: IEEE Symposium on VLSI Technology Digest of Technical Papers. 1993, pp. 41–42.

  • [16] H.-S. P. Wong, Y. Taur, and D. J. Frank. “Discrete Random Dopant Distribution Effects in Nanometer-Scale MOSFETs”. In: Microelectronics Reliability 38.9 (1998), pp. 1447–1456.

  • [17] R. W. Keyes. “Effect of Randomness in the Distribution of Impurity Ions on FET Thresholds in Integrated Electronics”. In: IEEE Journal of Solid-State Circuits 10.4 (Aug. 1975), pp. 245–247. issn: 0018-9200.

  • [18] B. Schwarz. “Simulation of Random Dopant Fluctuations with a Quantum Corrected Drift Diffusion Model”. MA thesis. Technische Universität Wien, 2011.

  • [19] T. Mizuno, J. Okumtura, and A. Toriumi. “Experimental Study of Threshold Voltage Fluctuation due to Statistical Variation of Channel Dopant Number in MOSFET’s”. In: IEEE Transactions on Electron Devices 41.11 (Nov. 1994), pp. 2216–2221. issn: 0018-9383.

  • [20] K. J. Kuhn, M. D. Giles, D. Becher, P. Kolar, A. Kornfeld, R. Kotlyar, S. T. Ma, A. Maheshwari, and S. Mudanai. “Process Technology Variation”. In: IEEE Transactions on Electron Devices 58.8 (Aug. 2011), pp. 2197–2208. issn: 0018-9383.

  • [21] P. Roussel, R. Degraeve, A. Kerber, L. Pantisano, and G. Groeseneken. “Accurate Reliability Evaluation of Non-Uniform Ultrathin Oxynitride and High-k Layers”. In: Proceedings of the International Reliability Physics Symposium (IRPS). Mar. 2003, pp. 29–33.

  • [22] A. Kerber. “Methodology for Determination of Process Induced BTI Variability in MG/HK CMOS Technologies Using a Novel Matrix Test Structure”. In: IEEE Transactions on Electron Devices 35.3 (Mar. 2014), pp. 294–296. issn: 0741-3106.

  • [23] D. Angot, V. Huard, L. Rahhal, A. Cros, X. Federspiel, A. Bajolet, Y. Carminati, M. Saliva, E. Pion, F. Cacho, and A. Bravaix. “BTI Variability Fundamental Understandings and Impact on Digital Logic by the use of Extensive Dataset”. In: Proceedings of the International Electron Devices Meeting (IEDM). Dec. 2013, pp. 15.4.1–15.4.4.

  • [24] B. Kaczer, J. Franco, P. J. Roussel, G. Groeseneken, T. Chiarella, N. Horiguchi, and T. Grasser. “Extraction of the Random Component of Time-Dependent Variability Using Matched Pairs”. In: IEEE Electron Device Letters 36.4 (Apr. 2015), pp. 300–302. issn: 0741-3106.

  • [25] B. E. Deal. “Standardized Terminology for Oxide Charges Associated with Thermally Oxidized Silicon”. In: Journal of The Electrochemical Society 127.4 (1980), pp. 979–981.

  • [26] D. M. Fleetwood. “’Border traps’ in MOS devices”. In: IEEE Transactions on Nuclear Science 39.2 (Apr. 1992), pp. 269–271. issn: 0018-9499.

  • [27] D. K. Schroder. Semiconductor Material and Device Characterization. John Wiley & Sons, 2006.

  • [28] G. Pobegen. “Degradation of Electrical Parameters of Power Semiconductor Devices - Process Influences and Modeling”. PhD thesis. Technische Universität Wien, 2013.

  • [29] T. Grasser, W. Goes, V. Sverdlov, and B. Kaczer. “The Universality of NBTI Relaxation and its Implications for Modeling and Characterization”. In: Proceedings of the International Reliability Physics Symposium (IRPS). 2007, pp. 268–280.

  • [30] D. Lepine. “Spin-Dependent Recombination on Silicon Surface”. In: Physical Review B 6 (2 July 1972), pp. 436–441.

  • [31] P. Lenahan and P. Dressendorfer. “Hole Traps and Trivalent Silicon Centers in Metal/Oxide/Silicon Devices”. In: Journal of Applied Physics 55.10 (1984), pp. 3495–3499.

  • [32] J. Wertz and J. Bolton. Electron Spin Resonance: Elementary Theory and Practical Applications. Chapman and Hall, 1986.

  • [33] A. Lund, S. Shimada, and M. Shiotan. Principles and Applications of ESR Spectroscopy. Springer Netherlands, 2011.

  • [34] P. Lenahan and J. Conley. “What can electron paramagnetic resonance tell us about the Si/SiO2 system?” In: Journal of Vacuum Science & Technology B 16.4 (1998), pp. 2134–2153.

  • [35] P. M. Lenahan, J. P. Campbell, A. T. Krishnan, and S. Krishnan. “A Model for NBTI in Nitrided Oxide MOSFETs Which Does Not Involve Hydrogen or Diffusion”. In: IEEE Transactions on Device and Materials Reliability 11.2 (June 2011), pp. 219–226. issn: 1530-4388.

  • [36] A. Mysovsky, P. Sushko, S. Mukhopadhyay, A. Edwards, and A. Shluger. “Calibration of Embedded-Cluster Method for Defect Studies in Amorphous Silica”. In: Physical Review B 69 (8 Feb. 2004).

  • [37] F. Schanovsky. “Atomistic Modeling in the Context of the Bias Temperature Instability”. PhD thesis. Technische Universität Wien, 2013.

  • [38] F. Schanovsky, W. Goes, and T. T. Grasser. “An Advanced Description of Axide Traps in MOS Transistors and its Relation to DFT”. In: Journal of Computational Electronics 9.3 (2010), pp. 135–140. issn: 1572-8137.

  • [39] F. Schanovsky, O. Baumgartner, V. Sverdlov, and T. Grasser. “A multi scale modeling approach to non-radiative multi phonon transitions at oxide defects in MOS structures”. In: Journal of Computational Electronics 11.3 (2012), pp. 218–224. issn: 1572-8137.

  • [40] J. M. M. de Nijs, K. G. Druijf, V. V. Afanas’ev, E. van der Drift, and P. Balk. “Hydrogen Induced Donor-Type Si/SiO2 Interface States”. In: Applied Physics Letters 65.19 (1994), pp. 2428–2430.

  • [41] P. Blöchl and J. Stathis. “Aspects of defects in silica related to dielectric breakdown of gate oxides in MOSFETs”. In: Journal of Physics: Condensed Matter 273–274 (1999), pp. 1022–1026. issn: 0921-4526.

  • [42] E. H. Poindexter, G. J. Gerardi, M.-E. Rueckel, P. Caplan, N. Johnson, and D. Biegelsen. “Electronic Traps and Pb Centers at the Si/SiO2 Interface: Band-Gap Energy Distribution”. In: Journal of Applied Physics 56.10 (1984), pp. 2844–2849.

  • [43] J. P. Campbell, P. M. Lenahan, C. J. Cochrane, A. T. Krishnan, and S. Krishnan. “Atomic-Scale Defects Involved in the Negative-Bias Temperature Instability”. In: IEEE Transactions on Device and Materials Reliability 7.4 (Dec. 2007), pp. 540–557. issn: 1530-4388.

  • [44] P. M. Lenahan, T. D. Mishima, J. Jumper, T. N. Fogarty, and R. T. Wilkins. “Direct Experimental Evidence for Atomic Scale Structural Changes Involved in the Interface-Trap Transformation Process”. In: IEEE Transactions on Nuclear Science 48.6 (Dec. 2001), pp. 2131–2135.

  • [45] K. Naruke, S. Taguchi, and M. Wada. “Stress Induced Leakage Current Limiting to Scale down EEPROM Tunnel Oxide Thickness”. In: Proceedings of the International Electron Devices Meeting (IEDM). Dec. 1988, pp. 424–427.

  • [46] S. Aresu, W. D. Ceuninck, R. Dreesen, K. Croes, E. Andries, J. Manca, L. D. Schepper, R. Degraeve, B. Kaczer, M. D’Olieslaeger, and J. D’Haen. “High-Resolution SILC Measurements of thin SiO2 at Ultra Low Voltages”. In: Microelectronics Reliability 42.9 (2002), pp. 1485–1489.

  • [47] Y. Miura and Y. Matukura. “Investigation of Silicon-Silicon Dioxide Interface Using MOS Structure”. In: Japanese Journal of Applied Physics 5.2 (1966), p. 180.

  • [48] S. E. Tyaginov and T. Grasser. “Modeling of Hot-Carrier Degradation: Physics and Controversial Issues”. In: Proceedings of the International Integrated Reliability Workshop (IIRW). 2012, pp. 206–215.

  • [49] E. Takeda, N. Suzuki, and T. Hagiwara. “Device Performance Degradation to Hot-Carrier Injection at Energies below the Si/SiO2 Energy Barrier”. In: Proceedings of the International Electron Devices Meeting (IEDM). Vol. 29. 1983, pp. 396–399.

  • [50] A. Bravaix, C. Guérin, D. Goguenheim, V. Huard, D. Roy, C. Besset, S. Renard, Y. M. Randriamihaja, and E. Vincent. “Off State Incorporation into the 3 Energy Mode Device Lifetime Modeling for Advanced 40nm CMOS Node”. In: Proceedings of the International Reliability Physics Symposium (IRPS). May 2010, pp. 55–64.

  • [51] E. H. Nicollian, C. N. Berglund, P. F. Schmidt, and J. M. Andrews. “Electrochemical Charging of Thermal SiO2 Films by Injected Electron Currents”. In: Journal of Applied Physics 42.13 (1971), pp. 5654–5664.

  • [52] T. Mizuno, A. Toriumi, M. Iwase, M. Takahashi, H. Niiyama, M. Fukmoto, and M. Yoshimi. “Hot-Carrier Effects in 0.1µm Gate Length CMOS Devices”. In: Proceedings of the International Electron Devices Meeting (IEDM). Dec. 1992, pp. 695–698.

  • [53] S. Novak, C. Parker, D. Becher, M. Liu, M. Agostinelli, M. Chahal, P. Packan, P. Nayak, S. Ramey, and S. Natarajan. “Transistor Aging and Reliability in 14nm Tri-Gate Technology”. In: Proceedings of the International Reliability Physics Symposium (IRPS). Apr. 2015, 2F.2.1–2F.2.5.

  • [54] W. McMahon, K. Matsuda, J. Lee, K. Hess, and J. Lyding. “The Effects of a Multiple Carrier Model of Interface Trap Generation on Lifetime Extraction for MOSFETs”. In: International Conference on Modeling and Simulation of Microsystems - MSM. 2002, pp. 576–579.

  • [55] A. Bravaix, C. Guerin, V. Huard, D. Roy, J. M. Roux, and E. Vincent. “Hot-Carrier Acceleration Factors for Low Power Management in DC-AC Stressed 40nm NMOS Node at High Temperature”. In: Proceedings of the International Reliability Physics Symposium (IRPS). Apr. 2009, pp. 531–548.

  • [56] S. Tyaginov, I. Starkov, H. Enichlmair, J. Park, C. Jungemann, and T. Grasser. “Physics-Based Hot-Carrier Degradation Models”. In: Silicon Nitride, Silicon Dioxide, and Emerging Dielectrics 11. Ed. by R. Sah. ECS Transactions, 2011, pp. 321–352. isbn: 978-1-56677-865-7.

  • [57] S. Ramey, Y. Lu, I. Meric, S. Mudanai, S. Novak, C. Prasad, and J. Hicks. “Aging Model Challenges in Deeply Scaled Tri-Gate Technologies”. In: Proceedings of the International Integrated Reliability Workshop (IIRW). Oct. 2015, pp. 56–62.

  • [58] R. H. Fowler and L. Nordheim. “Electron Emission in Intense Electric Fields”. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 119.781 (1928), pp. 173–181.

  • [59] J. Maserjian and N. Zamani. “Behavior of the Si/SiO2 Interface observed by Fowler-Nordheim Tunneling”. In: Journal of Applied Physics 53.1 (1982), pp. 559–567.

  • [60] D. DiMaria and E. Cartier. “Mechanism for Stress-Induced Leakage Currents in Thin Silicon Dioxide Films”. In: Journal of Applied Physics 78.6 (1995), pp. 3883–3894.

  • [61] S. Aritome, R. Shirota, G. Hemink, T. Endoh, and F. Masuoka. “Reliability Issues of Flash Memory Cells”. In: Proceedings of the IEEE 81.5 (May 1993), pp. 776–788.

  • [62] J. Wu, L. F. Register, and E. Rosenbaum. “Trap-Assisted Tunneling Current through Ultra-Thin Oxide”. In: Proceedings of the International Reliability Physics Symposium (IRPS). 1999, pp. 389–395.

  • [63] C. Y. Chen, Q. Ran, H.-J. Cho, A. Kerber, Y. Liu, M. R. Lin, and R. W. Dutton. “Correlation of Id- and Ig-Random Telegraph Noise to Positive Bias Temperature Instability in Scaled High-k Metal Gate n-Type MOSFETs”. In: Proceedings of the International Reliability Physics Symposium (IRPS). Apr. 2011, 3A.2.1–3A.2.6.

  • [64] M. Toledano-Luque, B. Kaczer, E. Simoen, R. Degraeve, J. Franco, P. Roussel, T. Grasser, and G. Groeseneken. “Correlation of Single Trapping and Detrapping Effects in Drain and Gate Currents of Nanoscaled nFETs and pFETs”. In: Proceedings of the International Reliability Physics Symposium (IRPS). 2012, XT.5.1–XT.5.6.

  • [65] D. Ielmini, A. S. Spinelli, M. A. Rigamonti, and A. L. Lacaita. “Modeling of SILC based on Electron and Hole Tunneling. I. Transient Effects”. In: IEEE Transactions on Electron Devices 47.6 (June 2000), pp. 1258–1265. issn: 0018-9383.

  • [66] B. Ricco, G. Gozzi, and M. Lanzoni. “Modeling and Simulation of Stress-Induced Leakage Current in Ultrathin SiO2 Films”. In: IEEE Transactions on Electron Devices 45.7 (July 1998), pp. 1554–1560. issn: 0018-9383.

  • [67] A. Chou, K. Lai, K. Kumar, P. Chowdhury, and J. Lee. “Modeling of Stress-Induced Leakage Current in Ultrathin Oxides with the Trap-Assisted Tunneling Mechanism”. In: Journal of Applied Physics 70.25 (1997), pp. 3407–3409.

  • [68] S. Zafar, A. Callegari, E. Gusev, and M. V. Fischetti. “Charge Trapping in High-k Gate Dielectric Stacks”. In: Proceedings of the International Electron Devices Meeting (IEDM). Dec. 2002, pp. 517–520.

  • [69] K. Onishi, R. Choi, C. S. Kang, H.-J. Cho, Y. H. Kim, R. E. Nieh, J. Han, S. A. Krishnan, M. S. Akbar, and J. C. Lee. “Bias-Temperature Instabilities of Polysilicon Gate HfO2 MOSFETs”. In: IEEE Transactions on Electron Devices 50.6 (June 2003), pp. 1517–1524. issn: 0018-9383.

  • [70] A. Kerber, E. Cartier, L. Pantisano, M. Rosmeulen, R. Degraeve, T. Kauerauf, G. Groeseneken, H. E. Maes, and U. Schwalke. “Characterization of the VT-Instability in SiO2 /HfO2 gate dielectrics”. In: Proceedings of the International Reliability Physics Symposium (IRPS). Mar. 2003, pp. 41–45.

  • [71] C. Shen, M. F. Li, X. P. Wang, H. Y. Yu, Y. P. Feng, A. T. L. Lim, Y. C. Yeo, D. S. H. Chan, and D. L. Kwong. “Negative U traps in HfO2 Gate Dielectrics and Frequency Dependence of Dynamic BTI in MOSFETs”. In: Proceedings of the International Electron Devices Meeting (IEDM). Dec. 2004, pp. 733–736.

  • [72] C. Shen, M.-F. Li, X. Wang, Y. Yee-Chia, and D.-L. Kwok. “A Fast Measurement Technique of MOSFET ID–VG Characteristics”. In: IEEE Electron Device Letters 27.1 (Jan. 2006), pp. 55–57.

  • [73] G. A. Du, D. S. Ang, Z. Q. Teo, and Y. Z. Hu. “Ultrafast Measurement on NBTI”. In: IEEE Electron Device Letters 30.3 (2009), pp. 275–277.

  • [74] Z. Ji, J. F. Zhang, and W. Zhang. “A New Mobility Extraction Technique Based on Simultaneous Ultrafast Id -Vg and Ccg -Vg Measurements in MOSFETs”. In: IEEE Transactions on Electron Devices 59.7 (July 2012), pp. 1906–1914. issn: 0018-9383.

  • [75] J. Koomen. “Investigation of the MOST Channel Conductance in Weak Inversion”. In: Solid-State Electronics 16.7 (1973), pp. 801–810.

  • [76] C. Sodini, T. Ekstedt, and J. Moll. “Charge Accumulation and Mobility in thin Dielectric MOS Transistors”. In: Solid-State Electronics 25.9 (1982), pp. 833–841.

  • [77] M.-S. Liang, J. Choi, P.-K. Ko, and C. Hu. “Inversion-Layer Capacitance and Mobility of very thin Gate-Oxide MOSFET’s”. In: IEEE Transactions on Electron Devices 33.3 (Mar. 1986), pp. 409–413.

  • [78] S. Mileusnic, M. Zivanov, and P. Habas. “MOS Transistors Characterization by Split C-V Method”. In: International Semiconductor Conference. Vol. 2. Oct. 2001, 503–506 vol.2.

  • [79] Z. Ji, J. Zhang, W. Zhang, G. Groeseneken, L. Pantisano, S. D. Gendt, and M. Heyns. “An Assessment of the Mobility Degradation Induced by Remote Charge Scattering”. In: Applied Physics Letters 95.26 (2009).

  • [80] M. Denais, C. Parthasarathy, G. Ribes, Y. Rey-Tauriac, N. Revil, A. Bravaix, V. Huard, and F. Perrier. “On-the-Fly Characterization of NBTI in Ultra–Thin Gate Oxide pMOSFET’s”. In: Proceedings of the International Electron Devices Meeting (IEDM). Dec. 2004, pp. 109–112.

  • [81] E. N. Kumar, V. D. Maheta, S. Purawat, A. E. Islam, C. Olsen, K. Ahmed, M. A. Alam, and S. Mahapatra. “Material Dependence of NBTI Physical Mechanism in Silicon Oxynitride (SiON) p-MOSFETs: A Comprehensive Study by Ultra-Fast On-The-Fly (UF-OTF) IDLIN Technique”. In: Proceedings of the International Electron Devices Meeting (IEDM). Dec. 2007, pp. 809–812.

  • [82] J. F. Zhang, Z. Ji, M. H. Chang, B. Kaczer, and G. Groeseneken. “Real Vth instability of pMOSFETs under Practical Operation Conditions”. In: Proceedings of the International Electron Devices Meeting (IEDM). Dec. 2007, pp. 817–820.

  • [83] A. Kerber and M. Kerber. “Fast Wafer Level Data Acquisition for Reliability Characterization of Sub-100 nm CMOS Technologies”. In: Proceedings of the International Integrated Reliability Workshop (IIRW). Oct. 2004, pp. 41–45.

  • [84] A. Kerber, K. Maitra, A. Majumdar, M. Hargrove, R. J. Carter, and E. A. Cartier. “Characterization of Fast Relaxation During BTI Stress in Conventional and Advanced CMOS Devices With HfO2 /TiN Gate Stacks”. In: IEEE Transactions on Electron Devices 55.11 (Nov. 2008), pp. 3175–3183. issn: 0018-9383.

  • [85] H. Reisinger, O. Blank, W. Heinrigs, A. Muhlhoff, W. Gustin, and C. Schlunder. “Analysis of NBTI Degradation- and Recovery-Behavior Based on Ultra Fast VT–Measurements”. In: Proceedings of the International Reliability Physics Symposium (IRPS). Mar. 2006, pp. 448–453.

  • [86] H. Reisinger, O. Blank, W. Heinrigs, W. Gustin, and C. Schlunder. “A Comparison of Very Fast to Very Slow Components in Degradation and Recovery Due to NBTI and Bulk Hole Trapping to Existing Physical Models”. In: IEEE Transactions on Device and Materials Reliability 7.1 (2007), pp. 119–129. issn: 1530-4388.

  • [87] T. Grasser, H. Reisinger, P.-J. Wagner, F. Schanovsky, W. Goes, and B. Kaczer. “The Time Dependent Defect Spectroscopy (TDDS) for the Characterization of the Bias Temperature Instability”. In: Proceedings of the International Reliability Physics Symposium (IRPS). May 2010, pp. 16–25.

  • [88] T. Grasser, H. Reisinger, P.-J. Wagner, and B. Kaczer. “The Time Dependent Defect Spectroscopy for the Characterization of Border Traps in Metal-Oxide-Semiconductor Transistors”. In: Physical Review B 82.24 (2010), p. 245318.

  • [89] T. Grasser. “Stochastic Charge Trapping in Oxides: From Random Telegraph Noise to Bias Temperature Instabilities”. In: Microelectronics Reliability 52 (2012), pp. 39–70.

  • [90] Reliability Physics and Engineering. Springer, 2013.

  • [91] J. McPherson. “Introduction to Reliability Physics and Engineering”. In: Proceedings of the International Reliability Physics Symposium (IRPS). tutorial. 2016.

  • [92] V. Huard, M. Denais, and C. Parthasarathy. “NBTI Degradation: From Physical Mechanisms to Modelling”. In: Microelectronics Reliability 46.1 (2006), pp. 1–23.

  • [93] V. Huard, M. Denais, and C. Parthasarathy. “NBTI Degradation: From Physical Mechanisms to Modelling”. In: Microelectronics Reliability 46.1 (2006), pp. 1–23.

  • [94] K. Jeppson and C. Svensson. “Negative Bias Stress of MOS Devices at High Electric Fields and Degradation of MNOS Devices”. In: Journal of Applied Physics 48.5 (1977), pp. 2004–2014.

  • [95] A. Krishnan, C. Chancellor, S. Chakravarthi, P. Nicollian, V. Reddy, A. Varghese, R. Khamankar, and S. Krishnan. “Material Dependence of Hydrogen Diffusion: Implications for NBTI Degradation”. In: Proceedings of the International Electron Devices Meeting (IEDM). 2005, pp. 688–691.

  • [96] S. Chakravarthi, A. Krishnan, V. Reddy, C. Machala, and S. Krishnan. “A Comprehensive Framework for Predictive Modeling of Negative Bias Temperature Instability”. In: Proceedings of the International Reliability Physics Symposium (IRPS). 2004, pp. 273–282.

  • [97] S. Mahapatra, N. Goel, S. Desai, S. Gupta, B. Jose, S. Mukhopadhyay, K. Joshi, A. Jain, A. Islam, and M. Alam. “A Comparative Study of Different Physics-Based NBTI Models”. In: IEEE Transactions on Electron Devices 60.3 (2013), pp. 901–916. issn: 0018-9383.

  • [98] J. Jameson, W. Harrison, P. Griffin, J. Plummer, and Y. Nishi. “A Semiclassical Model of Dielectric Relaxation in Glasses”. In: Journal of Applied Physics 100.1 (2006), p. 124101.

  • [99] S. Desai, S. Mukhopadhyay, N. Goel, N. Nanaware, B. Jose, K. Joshi, and S. Mahapatra. “A Comprehensive AC / DC NBTI Model: Stress, Recovery, Frequency, Duty Cycle and Process Dependence”. In: Proceedings of the International Reliability Physics Symposium (IRPS). 2013, XT.2.1–XT.2.11.

  • [100] H. Reisinger, O. Blank, W. Heinrigs, A. Mühlhoff, W. Gustin, and C. Schlünder. “Analysis of NBTI Degradation- and Recovery-Behavior Based on Ultra Fast Vth -Measurements”. In: Proceedings of the International Reliability Physics Symposium (IRPS). 2006, pp. 448–453.

  • [101] T. Grasser. “Negative Bias Temperature Instability: Modeling Challenges and Perspectives”. In: Proceedings of the International Reliability Physics Symposium (IRPS). (tutorial). 2008.

  • [102] F. Schanovsky and T. Grasser. “On the Microscopic Limit of the Modified Reaction-Diffusion Model for the Negative Bias Temperature Instability”. In: Proceedings of the International Reliability Physics Symposium (IRPS). Apr. 2012, XT.10.1–XT.10.6.

  • [103] T. Grasser, B. Kaczer, W. Goes, H. Reisinger, T. Aichinger, P. Hehenberger, P.-J. Wagner, F. Schanovsky, J. Franco, M. Toledano-Luque, and M. Nelhiebel. “The Paradigm Shift in Understanding the Bias Temperature Instability: From Reaction-Diffusion to Switching Oxide Traps”. In: IEEE Transactions on Electron Devices 58.11 (2011), pp. 3652–3666.

  • [104] D. Frank. “Random Telegraph Noise – Measurement, Analysis and Consequences”. In: Tutorial Notes of the International Reliability Physics Symposium. 2012.

  • [105] C. Shen, M.-F. Li, C. E. Foo, T. Yang, D. Huang, A. Yap, G. Samudra, and Y.-C. Yeo. “Characterization and Physical Origin of Fast Vth Transient in NBTI of pMOSFETs with SiON Dielectric”. In: Proceedings of the International Electron Devices Meeting (IEDM). 2006, pp. 333–336.

  • [106] A. Islam, H. Kufluoglu, D. Varghese, S. Mahapatra, and M. Alam. “Recent Issues in Negative-Bias Temperature Instability: Initial Degradation, Field Dependence of Interface Trap Generation, Hole Trapping Effects, and Relaxation”. In: IEEE Transactions on Electron Devices 54.9 (2007), pp. 2143–2154.

  • [107] D. Ang, S. Wang, G. Du, and Y. Hu. “A Consistent Deep-Level Hole Trapping Model for Negative Bias Temperature Instability”. In: IEEE Transactions on Device and Materials Reliability 8.1 (2008), pp. 22–34.

  • [108] W. Goes. “Hole Trapping and the Negative Bias Temperature Instability”. PhD thesis. Technische Universität Wien, 2011.

  • [109] T. Grasser, B. Kaczer, W. Goes, T. Aichinger, P. Hehenberger, and M. Nelhiebel. “A Two-Stage Model for Negative Bias Temperature Instability”. In: Proceedings of the International Reliability Physics Symposium (IRPS). 2009, pp. 33–44.

  • [110] J. Campbell, P. Lenahan, C. Cochrane, A. Krishnan, and S. Krishnan. “Atomic-Scale Defects Involved in the Negative-Bias Temperature Instability”. In: IEEE Transactions on Device and Materials Reliability 7.4 (2007), pp. 540–557.

  • [111] T. Grasser, H. Reisinger, W. Goes, T. Aichinger, P. Hehenberger, P.-J. Wagner, M. Nelhiebel, J.Franco, and B. Kaczer. “Switching Oxide Traps as the Missing Link between Negative Bias Temperature Instability and Random Telegraph Noise”. In: Proceedings of the International Electron Devices Meeting (IEDM). 2009.

  • [112] T. Grasser, B. Kaczer, W. Goes, H. Reisinger, T. Aichinger, P. Hehenberger, P.-J. Wagner, F. Schanovsky, J. Franco, P. Roussel, and M. Nelhiebel. “Recent Advances in Understanding the Bias Temperature Instability”. In: Proceedings of the International Electron Devices Meeting (IEDM). Dec. 2010, pp. 82–85.

  • [113] M. Weissman. “1/f Noise and other Slow, Nonexponential Kinetics in Condensed Matter”. In: Reviews of Modern Physics 60.2 (1988), pp. 537–571.

  • [114] D. Fleetwood, H. Xiong, Z.-Y. Lu, C. Nicklaw, J. Felix, R. Schrimpf, and S. Pantelides. “Unified Model of Hole Trapping, 1/f Noise, and Thermally Stimulated Current in MOS Devices”. In: IEEE Transactions on Electron Devices 49.6 (2002), pp. 2674–2683.

  • [115] T. Tewksbury. “Relaxation Effects in MOS Devices due to Tunnel Exchange with Near-Interface Oxide Traps”. Ph.D. Thesis. MIT, 1992.

  • [116] M. Kirton and M. Uren. “Noise in Solid-State Microstructures: A New Perspective on Individual Defects, Interface States and Low-Frequency (1/f) Noise”. In: Adv.Phys. 38.4 (1989), pp. 367–486.

  • [117] C. Henry and D. Lang. “Nonradiative Capture and Recombination by Multiphonon Emission in GaAs and GaP”. In: Physical Review B 15.2 (1977), pp. 989–1016.

  • [118] A. J. Lelis and T. R. Oldham. “Time Dependence of Switching Oxide Traps”. In: IEEE Transactions on Nuclear Science 41.6 (Dec. 1994), pp. 1835–1843. issn: 0018-9499.

  • [119] S. Makram-Ebeid and M. Lannoo. “Quantum Model for Phonon-Assisted Tunnel Ionization of Deep Levels in a Semiconductor”. In: Physical Review B 25.10 (1982), pp. 6406–6424.

  • [120] S. Ganichev, W. Prettl, and I. Yassievich. “Deep Impurity-Center Ionization by Far-Infrared Radiation”. In: Physics of Solid State 39.1 (1997), pp. 1703–1726.

  • [121] T. Grasser, B. Kaczer, W. Goes, T. Aichinger, P. Hehenberger, and M. Nelhiebel. “A Two–Stage Model for Negative Bias Temperature Instability”. In: Proceedings of the International Reliability Physics Symposium (IRPS). 2009, pp. 33–44.

  • [122] T. Grasser, H. Reisinger, W. Goes, T. Aichinger, P. Hehenberger, P. Wagner, M. Nelhiebel, J. Franco, and B. Kaczer. “Switching Oxide Traps as the Missing Link between Negative Bias Temperature Instability and Random Telegraph Noise”. In: Proceedings of the International Electron Devices Meeting (IEDM). 2009, pp. 729–732.

  • [123] T. Grasser, H. Reisinger, P.-J. Wagner, W. Goes, F. Schanovsky, and B. Kaczer. “The Time Dependent Defect Spectroscopy (TDDS) for the Characterization of the Bias Temperature Instability”. In: Proceedings of the International Reliability Physics Symposium (IRPS). May 2010, pp. 16–25.

  • [124] K. S. Ralls, W. J. Skocpol, L. D. Jackel, R. E. Howard, L. A. Fetter, R. W. Epworth, and D. M. Tennant. “Discrete Resistance Switching in Submicrometer Silicon Inversion Layers: Individual Interface Traps and Low-Frequency ( f1 ) Noise”. In: Physical Review Letters 52 (3 Jan. 1984), pp. 228–231.

  • [125] K. Huang and A. Rhys. “Theory of Light Absorption and Non-Radiative Transitions in F-Centres”. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 204 (1950), pp. 406–423.

  • [126] M. Uren, M. Kirton, and S. Collins. “Anomalous Telegraph Noise in Small-Area Silicon Metal-Oxide-Semiconductor Field-Effect Transistors”. In: Physical Review B 37.14 (1988), pp. 8346–8350.

  • [127] B. Kaczer, T. Grasser, J. Martin-Martinez, E. Simoen, M. Aoulaiche, P. Roussel, and G. Groeseneken. “NBTI from the Perspective of Defect States with Widely Distributed Time Scales”. In: Proceedings of the International Reliability Physics Symposium (IRPS). 2009, pp. 55–60.

  • [128] G. Kapila, N. Goyal, V. Maheta, C. Olsen, K. Ahmed, and S. Mahapatra. “A Comprehensive Study of Flicker Noise in Plasma Nitrided SiON p-MOSFETs: Process Dependence of Pre-Existing and NBTI Stress Generated Trap Distribution Profiles”. In: Proceedings of the International Electron Devices Meeting (IEDM). 2008, pp. 103–106.

  • [129] V. Huard, C. Parthasarathy, and M. Denais. “Single-Hole Detrapping Events in pMOSFETs NBTI Degradation”. In: Proceedings of the International Integrated Reliability Workshop (IIRW). 2005, pp. 5–9.

  • [130] S. Mahapatra, A. Islam, S. Deora, V. Maheta, K. Joshi, A. Jain, and M. Alam. “A Critical Re-evaluation of the Usefulness of R-D Framework in Predicting NBTI Stress and Recovery”. In: Proceedings of the International Reliability Physics Symposium (IRPS). 2011, pp. 614–623.

  • [131] P. Lenahan and J. Conley Jr. “What Can Electron Paramagnetic Resonance Tell Us about the Si/SiO2 System?” In: Journal of Vacuum Science & Technology B 16.4 (1998), pp. 2134–2153.

  • [132] J. Campbell, P. Lenahan, A. Krishnan, and S. Krishnan. “Identification of the Atomic-Scale Defects Involved in the Negative Bias Temperature Instability in Plasma-Nitrided p-Channel Metal-Oxide-Silicon Field-Effect Transistors”. In: Journal of Applied Physics 103.4 (2008), p. 044505.

  • [133] A. Neugroschel, G. Bersuker, R. Choi, C. Cochrane, P. Lenahan, D. Heh, C. Young, C. Kang, B. Lee, and R. Jammy. “An Accurate Lifetime Analysis Methodology Incorporating Governing NBTI Mechanisms in High-k/SiO2 Gate Stacks”. In: Proceedings of the International Electron Devices Meeting (IEDM). 2006, pp. 1–4.

  • [134] D. Ang, S. Wang, and C. Ling. “Evidence of Two Distinct Degradation Mechanisms from Temperature Dependence of Negative Bias Stressing of the Ultrathin Gate p-MOSFET”. In: IEEE Electron Device Letters 26.12 (2005), pp. 906–908.

  • [135] T. Aichinger, M. Nelhiebel, and T. Grasser. “Unambiguous Identification of the NBTI Recovery Mechanism using Ultra-Fast Temperature Changes”. In: Proceedings of the International Reliability Physics Symposium (IRPS). 2009, pp. 2–7.

  • [136] Z. Teo, D. Ang, and K. See. “Can the Reaction-Diffusion Model Explain Generation and Recovery of Interface States Contributing to NBTI?” In: Proceedings of the International Electron Devices Meeting (IEDM). 2009, pp. 737–740.

  • [137] L. Ragnarsson and P. Lundgren. “Electrical Characterization of Pb Centers in (100)Si/SiO2 Structures: The Influence of Surface Potential on Passivation During Post Metallization Anneal”. In: Journal of Applied Physics 88.2 (2000), pp. 938–942.

  • [138] G. Rzepa. “Microscopic Modeling of NBTI in MOS Transistors”. MA thesis. TUWIEN, 2013.

  • [139] E. Cartier and J. Stathis. “Atomic Hydrogen-Induced Degradation of the Si/SiO2 Structure”. In: Microelectronic Engineering 28.1-4 (1995), pp. 3–10.

  • [140] M. Denais, V. Huard, C. Parthasarathy, G. Ribes, F. Perrier, N. Revil, and A. Bravaix. “Interface Trap Generation and Hole Trapping under NBTI and PBTI in Advanced CMOS Technology with a 2-nm Gate Oxide”. In: IEEE Transactions on Device and Materials Reliability 4.4 (2004), pp. 715–722.

  • [141] M. Alam and S. Mahapatra. “A Comprehensive Model of pMOS NBTI Degradation”. In: Microelectronics Reliability 45.1 (2005), pp. 71–81.

  • [142] T. Grasser, H. Reisinger, P.-J. Wagner, and B. Kaczer. “The Time Dependent Defect Spectroscopy for the Characterization of Border Traps in Metal-Oxide-Semiconductor Transistors”. In: Physical Review B 82.24 (2010), p. 245318.

  • [143] D. Ang. “Observation of Suppressed Interface State Relaxation under Positive Gate Biasing of the Ultrathin Oxynitride Gate p-MOSFET Subjected to Negative-Bias Temperature Stressing”. In: IEEE Electron Device Letters 27.5 (2006), pp. 412–415.

  • [144] E. Cartier. “Characterization of the Hot-Electron-Induced Degradation in Thin SiO2 Gate Oxides”. In: Microelectronics Reliability 38.2 (1998), pp. 201–211.

  • [145] J. de Nijs, K. Druijf, V. Afanas’ev, E. van der Drift, and P. Balk. “Hydrogen Induced Donor-Type Si/SiO2 Interface States”. In: Applied Physics Letters 65.19 (1994), pp. 2428–2430.

  • [146] A. El-Sayed, M. Watkins, T. Grasser, V. Afanas’ev, and A. Shluger. “Hydrogen induced rupture of strained Si-O bonds in amorphous silicon dioxide”. In: Physical Review Letters 114.11 (2015), p. 115503.

  • [147] A. El-Sayed, Y. Wimmer, W. Goes, T. Grasser, V. Afanas’ev, and A. Shluger. “Theoretical Models of Hydrogen-Induced Defects in Amorphous Silicon Dioxide”. In: Physical Review B 92.11 (2015), p. 014107.

  • [148] J. Godet, F. Giustino, and A. Pasquarello. “Proton-Induced Fixed Positive Charge at the SiO2 Interface”. In: Physical Review Letters 99.12 (2007), pp. 126102-1–126102-4.

  • [149] P. Lenahan. “Atomic Scale Defects Involved in MOS Reliability Problems”. In: Microelectronic Engineering 69 (2003), pp. 173–181.

  • [150] E. Poindexter and W. Warren. “Paramagnetic Point Defects in Amorphous Thin Films of SiO2 and Si3 N4 : Updates and Additions”. In: Journal of The Electrochemical Society 142.7 (1995), pp. 2508–2516.

  • [151] C. Van de Walle and B. Tuttle. “Microscopic Theory of Hydrogen in Silicon Devices”. In: IEEE Transactions on Electron Devices 47.10 (2000), pp. 1779–1786.

  • [152] P. Blöchl. “First-Principles Calculations of Defects in Oxygen-Deficient Silica Exposed to Hydrogen”. In: Physical Review B 62.10 (2000), pp. 6158–6179.

  • [153] D. Griscom. “Diffusion of Radiolytic Molecular Hydrogen as a Mechanism for the Post-Irradiation Buildup of Interface States in SiO2 -on-Si Structures”. In: Journal of Applied Physics 58.7 (1985), pp. 2524–2533.

  • [154] G. Malavasi, M. Menziani, A. Pedone, and U. Segre. “Void Size Distribution in MD-Modelled Silica Glass Structures”. In: Journal of Non-Crystalline Solids 352.3 (2006), pp. 285–296.

  • [155] M. Wilde and K. Fukutani. “Hydrogen Detection Near Surfaces and Shallow Interfaces with Resonant Nuclear Reaction Analysis”. In: Surface Science Reports 69.4 (2014), pp. 196–295.

  • [156] Z. Liu, S. Fujieda, H. Ishigaki, M. Wilde, and K. Fukutani. “Current Understanding of the Transport Behavior of Hydrogen Species in MOS Stacks and Their Relation to Reliability Degradation”. In: ECS Transactions 35.4 (2011), pp. 55–72.

  • [157] D. Lang. “Deep-Level Transient Spectroscopy: A new Method to Characterize Traps in Semiconductors”. In: Journal of Applied Physics 45.7 (1974), pp. 3023–3032.

  • [158] L. Heiss, A. Lachmann, R. Schwab, G. Panagopoulos, P. Baumgartner, M. Y. Virupakshappaa, and D. Schmitt-Landsiedel. “New Methodology for On-Chip RF Reliability Assessment”. In: Proceedings of the International Reliability Physics Symposium (IRPS). Apr. 2016.

  • [159] A. Asenov, R. Balasubramaniam, A. Brown, and J. Davies. “RTS Amplitudes in Decananometer MOSFETs: 3-D Simulation Study”. In: IEEE Transactions on Electron Devices 50.3 (2003), pp. 839–845.

  • [160] K. Takeuchi, T. Nagumo, S. Yokogawa, K. Imai, and Y. Hayashi. “Single-Charge-Based Modeling of Transistor Characteristics Fluctuations Based on Statistical Measurement of RTN Amplitude”. In: IEEE Symposium on VLSI Technology Digest of Technical Papers. 2009, pp. 54–55.

  • [161] A. Ghetti, C. Compagnoni, A. Spinelli, and A. Visconti. “Comprehensive Analysis of Random Telegraph Noise Instability and Its Scaling in Deca–Nanometer Flash Memories”. In: IEEE Transactions on Electron Devices 56.8 (2009), pp. 1746–1752.

  • [162] B. Kaczer, T. Grasser, P. Roussel, J. Franco, R. Degraeve, L. Ragnarsson, E. Simoen, G. Groeseneken, and H. Reisinger. “Origin of NBTI Variability in Deeply Scaled PFETs”. In: Proceedings of the International Reliability Physics Symposium (IRPS). 2010, pp. 26–32.

  • [163] J. Franco, B. Kaczer, P. Roussel, J. Mitard, M. Cho, L. Witters, T. Grasser, and G. Groeseneken. “SiGe Channel Technology: Superior Reliability Toward Ultrathin EOT Devices – Part I: NBTI”. In: IEEE Transactions on Electron Devices 60.1 (Jan. 2013), pp. 396–404. issn: 0018-9383.

  • [164] M. Toledano-Luque, B. Kaczer, P. J. Roussel, J. Franco, L. A. Ragnarsson, T. Grasser, and G. Groeseneken. “Depth Localization of Positive Charge Trapped in Silicon Oxynitride Field Effect Transistors after Positive and Negative Gate Bias Temperature Stress”. In: Applied Physics Letters 98 (2011), pp. 183506-1–183506-3.

  • [165] M. Toledano-Luque, B. Kaczer, E. Simoen, P. R. A. A. Veloso, T. Grasser, and G. Groeseneken. “Temperature and Voltage Dependences of the Capture and Emission Times of Individual Traps in High-k Dielectrics”. In: Microelectronic Engineering 88.7 (July 2011), pp. 1243–1246.

  • [166] R. Manchini, ed. Op Amps For Everyone. Texas Instruments, 2002.

  • [167] E. Page. “Continuous Inspection Schemes”. In: OJB 41.1/2 (1954), pp. 100–115.

  • [168] E. Basseville, M. Basseville, and I. Nikiforov. Detection of Abrupt Changes: Theory and Application. Online, 1993.

  • [169] T. Moon and W. Stirling. Mathematical Methods and Algorithms for Signal Processing. Prentice Hall, 2000.

  • [170] W. Taylor. Change–Point Analysis: A Powerful New Tool for Detecting Changes. Online. 2000.

  • [171] B. Efron and R. Tibshirani. An Introduction to the Bootstrap. Chapman & Hall, 1993.

  • [172] J. Campbell, P. Lenahan, A. Krishnan, and S. Krishnan. “Density of States and Structure of NBTI-Induced Defects in Plasma-Nitrided pMOSFETs”. In: Proceedings of the International Reliability Physics Symposium (IRPS). 2007, pp. 503–510.

  • [173] T. Grasser. “Stochastic Charge Trapping in Oxides: From Random Telegraph Noise to Bias Temperature Instabilities”. In: Microelectronics Reliability 52 (2012), pp. 39–70.

  • [174] N. Tega, H. Miki, T. Mine, K. Ohmori, and K. Yamada. “Statistical Analysis of Relationship between Negative-Bias Temperature Instability and Random Telegraph Noise in Small p-channel Metal-Oxide-Semiconductor Field-Effect Transistors”. In: Japanese Journal of Applied Physics 53 (2014), pp. 1–6.

  • [175] J. Franco, B. Kaczer, P. Roussel, J. Mitard, C. Moonju, L. Witters, T. Grasser, and G. Groeseneken. “SiGe Channel Technology: Superior Reliability Toward Ultrathin EOT Devices – Part I: NBTI”. In: IEEE Transactions on Electron Devices 60.1 (Jan. 2013), pp. 396–404. issn: 0018-9383.

  • [176] S. Deora, A. Paul, R. Bijesh, J. Huang, G. Klimeck, G. Bersuker, P. Krisch, and R. Jammy. “Intrinsic Reliability Improvement in Biaxially Strained SiGe p-MOSFETs”. In: IEEE Electron Device Letters 32.3 (Mar. 2011), pp. 255–257. issn: 0741-3106.

  • [177] S. Krishnan, U. Kwon, N. Moumen, M. Stoker, E. Harley, S. Bedell, D. Nair, B. Greene, W. Henson, M. Chowdhury, D. Prakash, E. Wu, D. Ioannou, E. Cartier, M.-H. Na, S. Inumiya, K. McStay, L. Edge, R. Iijima, J. Cai, M. Frank, M. Hargrove, D. Guo, A. Kerber, H. Jagannathan, T. Ando, J. Shepard, S. Siddiqui, M. Dai, H. Bu, J. Schaeffer, D. Jaeger, K. Barla, T. Wallner, S. Uchimura, Y. Lee, G. Karve, S. Zafar, D. Schepis, Y. Wang, R. Donaton, S. Saroop, P. Montanini, Y. Liang, J. Stathis, R. Carter, R. Pal, V. Paruchuri, H. Yamasaki, J.-H. Lee, M. Ostermayr, J.-P. Han, Y. Hu, M. Gribelyuk, D.-G. Park, X. Chen, S. Samavedam, S. Narasimha, P. Agnello, M. Khare, R. Divakaruni, V. Narayanan, and M. Chudzik. “A manufacturable dual channel (Si and SiGe) high-k metal gate CMOS technology with multiple oxides for high performance and low power applications”. In: Proceedings of the International Electron Devices Meeting (IEDM). Dec. 2011, pp. 28.1.1–28.1.4.

  • [178] P. Srinivasan, J. Fronheiser, K. Akarvardar, A. Kerber, L. Edge, R. Southwick, E. Cartier, and H. Kothari. “SiGe composition and thickness effects on NBTI in replacement metal gate high-k technologies”. In: Proceedings of the International Reliability Physics Symposium (IRPS). June 2014, 6A.3.1–6A.3.6.

  • [179] O. Baumgartner, Z. Stanojevic, K. Schnass, M. Karner, and H. Kosina. “VSP–A Quantum-Electronic Simulation Framework”. In: Journal of Computational Electronics (2013). issn: 1569-8025.

  • [180] P. Hehenberger, W. Goes, O. Baumgartner, J. Franco, B. Kaczer, and T. Grasser. “Quantum–Mechanical Modeling of NBTI in High-k SiGe MOSFETs”. In: Proceedings of the International Conferene on Simulation of Semiconductor Processes and Devices (SISPAD). 2012, pp. 11–14.

  • [181] Minimos-NT User Manual - Release 2014.03. Global TCAD Solutions.

  • [182] A. R. Brown, J. Watling, G. Roy, C. Riddet, C. L. Alexander, U. Kovac, A. Martinez, and A. Asenov. “Use of Density Gradient Quantum Corrections in the Simulation of Statistical Variability in MOSFETs”. In: Journal of Computational Electronics 3 (2010), pp. 187–196.

  • [183] W. Goes, M. Karner, S. Tyaginov, P. Hehenberger, and T. Grasser. “Level Shifts and Gate Interfaces as Vital Ingredients in Modeling of Charge Trapping”. In: Proceedings of the International Conferene on Simulation of Semiconductor Processes and Devices (SISPAD). Sept. 2008, pp. 69–72.

  • [184] B. Kaczer, T. Grasser, P. Roussel, J. Martin-Martinez, R. O’Connor, B. O’Sullivan, and G. Groeseneken. “Ubiquitous Relaxation in BTI Stressing – New Evaluation and Insights”. In: Proceedings of the International Reliability Physics Symposium (IRPS). 2008, pp. 20–27.

  • [185] V. Afanas’ev and A. Stesmans. “Hydrogen-Induced Valence Alternation State at SiO2 Interfaces”. In: Physical Review Letters 80 (23 June 1998), pp. 5176–5179.

  • [186] M. Nelhiebel, J. Wissenwasser, T. Detzel, A. Timmerer, and E. Bertagnolli. “Hydrogen-Related Influence of the Metallization Stack on Characteristics and Reliability of a Trench Gate Oxide”. In: Microelectronics Reliability 45 (2005), pp. 1355–1359.

  • [187] A. Katsetos. “Negative Bias Temperature Instability (NBTI) Recovery with Bake”. In: Microelectronics Reliability 48.10 (2008), pp. 1655–1659.

  • [188] T. Grasser, P.-J. Wagner, H. Reisinger, T. Aichinger, G. Pobegen, M. Nelhiebel, and B. Kaczer. “Analytic Modeling of the Bias Temperature Instability Using Capture/Emission Time Maps”. In: Proceedings of the International Electron Devices Meeting (IEDM). Dec. 2011, pp. 27.4.1–27.4.4.

  • [189] V. Putcha, M. Simicic, P. Weckx, B. Parvais, J. Franco, B. Kaczer, D. Linten, D. Verkest, A. Thean, and G. Groeseneken. “Smart-Array for Pipelined BTI Characterization”. In: Proceedings of the International Integrated Reliability Workshop (IIRW). Oct. 2015, pp. 95–98.

  • [190] M. Simicic, A. Subirats, P. Weckx, B. Kaczer, J. Franco, P. Roussel, D. Linten, A. Thean, G. Groeseneken, and G. Gielen. “Comparative Experimental Analysis of Time-Dependent Variability using a Transistor Test Array”. In: Proceedings of the International Reliability Physics Symposium (IRPS). Apr. 2016.

  • [191] M. Simicic, V. Putcha, B. Parvais, P. Weckx, B. Kaczer, G. Groeseneken, G. Gielen, D. Linten, and A. Thean. “Advanced MOSFET Variability and Reliability Characterization Array”. In: Proceedings of the International Integrated Reliability Workshop (IIRW). Oct. 2015, pp. 73–76.

« PreviousUpNext »Contents
Previous: 15.2 Outlook    Next: List of Publications